Casticin inhibits COX-2 and iNOS expression via suppression of NF-κB and MAPK signaling in lipopolysaccharide-stimulated mouse macrophages

Journal of Ethnopharmacology
2014.0

Abstract

The fruits of Vitex rotundifolia L. are widely used to treat inflammation of the airway in Traditional Chinese medicine. Previous studies found that casticin, isolated from Vitex rotundifolia, could induce apoptosis of tumor cells. In this study, we evaluated the anti-inflammatory effects of casticin and its underlying molecular mechanism in lipopolysaccharide (LPS)-stimulated macrophages. RAW264.7 cells were pretreated with various concentrations of casticin (0.3-10μM), and then treated with LPS to induce inflammation. We assayed the levels of proinflammatory cytokines and prostaglandin E2 (PGE2) using ELISA, and examined the protein expression of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2, and heme oxygenase (HO)-1 by Western blot. We also investigated the anti-inflammatory molecular mechanism by analyzing inflammatory-associated signaling pathways, including the nuclear transcription factor kappa-B (NF-κB) and mitogen-activated protein kinase (MAPK) pathways. We found casticin inhibited the levels of nitric oxide and PGE2, and decreased the production of proinflammatory cytokines such as interleukin (IL)-1β, IL-6, and tumor necrosis factor α (TNF-α). In addition, iNOS and COX-2 expression levels were suppressed and casticin increased HO-1 and Nrf2 production in a concentration-dependent manner. Furthermore, casticin significantly inhibited NF-κB subunit p65 proteins in the nucleus and decreased Akt and MAPK activation. These results suggest that the anti-inflammatory effect of casticin is due to inhibition of proinflammatory cytokines and mediators by blocking the NF-κB, Akt, and MAPK signaling pathways.

Knowledge Graph

Similar Paper

Casticin inhibits COX-2 and iNOS expression via suppression of NF-κB and MAPK signaling in lipopolysaccharide-stimulated mouse macrophages
Journal of Ethnopharmacology 2014.0
Inhibition of c-Jun N-terminal kinase and nuclear factor κ B pathways mediates fisetin-exerted anti-inflammatory activity in lipopolysccharide-treated RAW264.7 cells
Immunopharmacology and Immunotoxicology 2012.0
Schisantherin A Exhibits Anti-inflammatory Properties by Down-Regulating NF-κB and MAPK Signaling Pathways in Lipopolysaccharide-Treated RAW 264.7 Cells
Inflammation 2010.0
Anti-inflammatory and antioxidant effects of Chaetoglobosin Vb in LPS-induced RAW264.7 cells: Achieved via the MAPK and NF-κB signaling pathways
Food and Chemical Toxicology 2021.0
Anti-inflammatory Potential of Saponins from <i>Aster tataricus</i> via NF-κB/MAPK Activation
Journal of Natural Products 2019.0
A concise synthesis of viscolin, and its anti-inflammatory effects through the suppression of iNOS, COX-2, ERK phosphorylation and proinflammatory cytokines expressions
European Journal of Medicinal Chemistry 2012.0
Rosmanol Potently Inhibits Lipopolysaccharide-Induced iNOS and COX-2 Expression through Downregulating MAPK, NF-κB, STAT3 and C/EBP Signaling Pathways
Journal of Agricultural and Food Chemistry 2009.0
Acacetin suppressed LPS-induced up-expression of iNOS and COX-2 in murine macrophages and TPA-induced tumor promotion in mice
Biochemical Pharmacology 2006.0
Anti-Inflammatory Effects of Trilinolein from<i>Panax notoginseng</i>Through the Suppression of NF-κB and MAPK Expression and Proinflammatory Cytokine Expression
The American Journal of Chinese Medicine 2014.0
Evaluation of the anti-inflammatory effects of phloretin and phlorizin in lipopolysaccharide-stimulated mouse macrophages
Food Chemistry 2012.0