Syntheses of .alpha.- and .gamma.-substituted amides, peptides, and esters of methotrexate and their evaluation as inhibitors of folate metabolism

Journal of Medicinal Chemistry
1982.0

Abstract

N-[4-[[(Benzyloxy)carbonyl]methylamino]benzoyl]-L-glutamic acid alpha-benzyl ester (2) and gamma-benzyl ester (6) served as key intermediates in syntheses of precursors to amides and peptides of methotrexate (MTX) involving both the alpha- and gamma-carboxyl groupings of the glutamate moiety. Coupling of 2 and 6 at the open carboxyl grouping with amino compounds was affected by the mixed anhydride method (using isobutyl chloroformate); carboxyl groupings of amino acids coupled with 2 and 6 were protected as benzyl esters. N-[4-[[(Benzyloxy)carbonyl]methylamino]benzoyl]-L-glutamic acid gamma-methyl ester (5), a precursor to MTX gamma-methyl ester, was prepared from L-glutamic acid gamma-methyl ester and 4-[[(benzyloxy)carbonyl]methylamino]benzoyl chloride (1) in a manner similar to that used to prepare 2 and 6. The precursor to MTX alpha-methyl ester was prepared from gamma-benzyl ester 6 by treatment with MeI in DMF containing (i-Pr)2NEt. Benzyl and (benzyloxy)carbonyl protective groupings were removed by hydrogenolysis, and the deprotected side-chain precursors were converted to alpha- and gamma-substituted amides, peptides, and esters of MTX by alkylation with 6-(bromomethyl)-2,4-pteridinediamine hydrobromide (12). Biochemical-pharmacological studies on the prepared compounds aided in establishing that the alpha-carboxyl grouping of the glutamate moiety contributes to the binding of MTX to dihydrofolate reductase while the gamma-carboxyl does not. Other studies on the peptide MTX-gamma-Glu (13h) are concerned with the contribution toward antifolate activity of this metabolite of MTX. The compounds prepared were also evaluated and compared with MTX with respect to cytotoxicity toward H.Ep.-2 cells and effect on L1210 murine leukemia.

Knowledge Graph

Similar Paper

Syntheses of .alpha.- and .gamma.-substituted amides, peptides, and esters of methotrexate and their evaluation as inhibitors of folate metabolism
Journal of Medicinal Chemistry 1982.0
Methotrexate analogs. 10. Direct coupling of methotrexate and diethyl L-glutamate in the presence of peptide bond-forming reagents
Journal of Medicinal Chemistry 1978.0
Methotrexate analogs. 14. Synthesis of new .gamma.-substituted derivatives as dihydrofolate reductase inhibitors and potential anticancer agents
Journal of Medicinal Chemistry 1981.0
Analogs of methotrexate and aminopterin with .gamma.-methylene and .gamma.-cyano substitution of the glutamate side chain: synthesis and in vitro biological activity. 40
Journal of Medicinal Chemistry 1991.0
Syntheses and evaluation as antifolates of MTX analogs derived from 2,.omega.-diaminoalkanoic acids
Journal of Medicinal Chemistry 1985.0
Methotrexate analogs. 20. Replacement of glutamate by longer-chain amino diacids: Effects on dihydrofolate reductase inhibition, cytotoxicity, and in vivo antitumor activity
Journal of Medicinal Chemistry 1983.0
Methotrexate analogs. 28. Synthesis and biological evaluation of new .gamma.-monoamides of aminopterin and methotrexate
Journal of Medicinal Chemistry 1986.0
Synthesis and biological activity of the 2-desamino and 2-desamino-2-methyl analogs of aminopterin and methotrexate
Journal of Medicinal Chemistry 1991.0
Methotrexate analogs. 13. Chemical and pharmacological studies on amide, hydrazide, and hydroxamic acid derivatives of the glutamate side chain
Journal of Medicinal Chemistry 1981.0
Methotrexate analogs. 19. Replacement of the glutamate side-chain in classical antifolates by L-homocysteic acid and L-cysteic acid: effect on enzyme inhibition and antitumor activity
Journal of Medicinal Chemistry 1984.0