Methotrexate analogs. 28. Synthesis and biological evaluation of new .gamma.-monoamides of aminopterin and methotrexate

Journal of Medicinal Chemistry
1986.0

Abstract

Lipophilic gamma-monoamide derivatives of aminopterin (AMT) were synthesized in high overall yield from 4-amino-4-deoxy-N10-formylpteroic acid and gamma-N-tert-alkyl-, gamma-N-aralkyl-, or gamma-N-arylamides of alpha-benzyl L-glutamate via a modification of the mixed carboxylic-carbonic anhydride coupling method. Coupling was also accomplished with p-nitrophenyl 4-amino-4-deoxy-N10-formylpteroate. Compounds obtained in this manner included the gamma-tert-butylamide, gamma-(1-adamantylamide), gamma-benzylamide, gamma-(3,4-dichlorobenzylamide), gamma-(2,6-dichlorobenzylamide), gamma-anilide, gamma-(3,4-methylenedioxyanilide), and gamma-(3,4-dihydroxanilide) derivatives of AMT. Also prepared, from 4-amino-4-deoxy-N10-methylpteroic acid via diethyl phosphorocyanidate coupling, was the gamma-(3,4-methylenedioxyanilide) of MTX. The methylenedioxyanilides were cleaved smoothly to dihydroxyanilides with boron tris(trifluoroacetate) in trifluoroacetic acid. All the gamma-monoamides were tested as inhibitors of purified dihydrofolate reductase (DHFR) from murine L1210 leukemia cells and as inhibitors of the growth of wild-type L1210 cells and a subline (L1210/R81) with high-level resistance to MTX and AMT based mainly on a defect in drug uptake via active transport. Several compounds were also tested against human leukemic lymphoblasts (CEM cells) and a resistant subline (CEM/MTX) whose resistance is likewise based on uptake. The IC50 of the gamma-monoamides against DHFR was 1.5- to 5-fold higher than that of the parent acids, but the IC50 against cultured cells varied over a much broader range, suggesting that uptake and/or metabolism rather than DHFR binding are principal determinants of in vitro growth inhibitory activity for these compounds. gamma-N-Aryl and gamma-N-aralkyl derivatives appeared to be more potent than gamma-N-tert-alkyl derivatives. Where comparison could be made, AMT gamma-monoamides were more potent than MTX gamma-monoamides. Several of the gamma-monoamides showed potency comparable to that of the parent acid against wild-type L1210 and CEM cells; all of them were more potent than MTX against the L1210/R81 subline; and some of the AMT gamma-monoamides were also more potent than the parent acid against resistant CEM/MTX cells. As a group, however, the gamma-monoamides were considerably more active against the murine cells than against the human cells, suggesting that the former may take up the amides better or may be able to metabolize them more efficiently than the parent acids. All the gamma-monoamides were tested in vivo against L1210 leukemia in mice.(ABSTRACT TRUNCATED AT 400 WORDS)

Knowledge Graph

Similar Paper

Methotrexate analogs. 28. Synthesis and biological evaluation of new .gamma.-monoamides of aminopterin and methotrexate
Journal of Medicinal Chemistry 1986.0
Methotrexate Analogues. 25. Chemical and Biological Studies on the γ-tert-Butyl Esters of Methotrexate and Aminopterin
Journal of Medicinal Chemistry 1985.0
Analogs of methotrexate and aminopterin with .gamma.-methylene and .gamma.-cyano substitution of the glutamate side chain: synthesis and in vitro biological activity. 40
Journal of Medicinal Chemistry 1991.0
Methotrexate analogs. 14. Synthesis of new .gamma.-substituted derivatives as dihydrofolate reductase inhibitors and potential anticancer agents
Journal of Medicinal Chemistry 1981.0
Methotrexate analogs. 34. Replacement of the glutamate moiety in methotrexate and aminopterin by long-chain 2-aminoalkanedioic acids
Journal of Medicinal Chemistry 1988.0
Methotrexate analogs. 31. Meta and ortho isomers of aminopterin, compounds with a double bond in the side chain, and a novel analog modified at the .alpha.-carbon: chemical and in vitro biological studies
Journal of Medicinal Chemistry 1988.0
Methotrexate analogs. 13. Chemical and pharmacological studies on amide, hydrazide, and hydroxamic acid derivatives of the glutamate side chain
Journal of Medicinal Chemistry 1981.0
Synthesis and biological activity of methotrexate analogs with two acid groups and a hydrophobic aromatic ring in the side chain
Journal of Medicinal Chemistry 1991.0
Syntheses and evaluation as antifolates of MTX analogs derived from 2,.omega.-diaminoalkanoic acids
Journal of Medicinal Chemistry 1985.0
Methotrexate analogs. 19. Replacement of the glutamate side-chain in classical antifolates by L-homocysteic acid and L-cysteic acid: effect on enzyme inhibition and antitumor activity
Journal of Medicinal Chemistry 1984.0