Synthesis and biological activity of methotrexate analogs with two acid groups and a hydrophobic aromatic ring in the side chain

Journal of Medicinal Chemistry
1991.0

Abstract

The heretofore unknown gamma-(m-carboxyanilide) and gamma-(m-boronoanillide) derivatives of methotrexate (MTX) and the gamma-(m-carboxyanilide) derivatives of aminopterin (AMT) were prepared and tested as inhibitors of dihydrofolate reductase (DHFR) and as inhibitors of cell growth in culture with the aim of comparing their activity with that of N alpha-(4-amino-4-deoxypteroyl)-N delta-hemiphthaloyl-L-ornithine, a potent antifolate whose side chain likewise contains a hydrophobic aromatic ring with an acid group on the ring. All three anilides were potent DHFR inhibitors, with activity comparable to MTX and AMT. The gamma-(m-boronoanilide) displayed growth inhibitory potency similar to that of the hemiphthaloylornithine analogue, with an IC50 of only 0.7 nM. This compound, which is the most potent of the gamma-amides of MTX tested to date, is also the first reported example of an antifolate with a B(OH)2 group in the side chain and is especially novel because of its potential to form a stable tetrahedral boronate complex by reaction with electron rich OH or NH2 groups in the active site of DHFR or other folate enzymes. In antitumor assays against L1210 leukemia in mice, N alpha-(4-amino-4-deoxypteroyl)-N delta-hemiphthaloyl-L-ornithine gave a T/C of greater than 263% at 20 mg/kg (qdx9) and 300% at 16 mg/kg (bidx10), whereas maximally tolerated doses of MTX of 8 mg/kg (qdx9) and 1 mg/kg (bidx10) gave T/C values of 213 and 188%, respectively. MTX gamma-(m-boronoanilide) was also active, with a T/C of 175% at 32 mg/kg (qdx9), the highest dose tested.

Knowledge Graph

Similar Paper

Synthesis and biological activity of methotrexate analogs with two acid groups and a hydrophobic aromatic ring in the side chain
Journal of Medicinal Chemistry 1991.0
Analogs of methotrexate and aminopterin with .gamma.-methylene and .gamma.-cyano substitution of the glutamate side chain: synthesis and in vitro biological activity. 40
Journal of Medicinal Chemistry 1991.0
Methotrexate analogs. 31. Meta and ortho isomers of aminopterin, compounds with a double bond in the side chain, and a novel analog modified at the .alpha.-carbon: chemical and in vitro biological studies
Journal of Medicinal Chemistry 1988.0
Syntheses and evaluation as antifolates of MTX analogs derived from 2,.omega.-diaminoalkanoic acids
Journal of Medicinal Chemistry 1985.0
Methotrexate analogs. 14. Synthesis of new .gamma.-substituted derivatives as dihydrofolate reductase inhibitors and potential anticancer agents
Journal of Medicinal Chemistry 1981.0
Methotrexate analogs. 28. Synthesis and biological evaluation of new .gamma.-monoamides of aminopterin and methotrexate
Journal of Medicinal Chemistry 1986.0
Methotrexate analogs. 26. Inhibition of dihydrofolate reductase and folylpolyglutamate synthetase activity and in vitro tumor cell growth by methotrexate and aminopterin analogs containing a basic amino acid side chain
Journal of Medicinal Chemistry 1986.0
Methotrexate analogs. 19. Replacement of the glutamate side-chain in classical antifolates by L-homocysteic acid and L-cysteic acid: effect on enzyme inhibition and antitumor activity
Journal of Medicinal Chemistry 1984.0
Folate analogs. 34. Synthesis and antitumor activity of non-polyglutamylatable inhibitors of dihydrofolate reductase
Journal of Medicinal Chemistry 1991.0
Methotrexate analogs. 30. Dihydrofolate reductase inhibition and in vitro tumor cell growth inhibition by N.epsilon.-(haloacetyl)-L-lysine and N.delta.-(haloacetyl)-L-ornithine analogs and an acivicin analog of methotrexate
Journal of Medicinal Chemistry 1987.0