Methotrexate analogs. 33. N.delta.-Acyl-N.alpha.-(4-amino-4-deoxypteroyl)-L-ornithine derivatives. Synthesis and in vitro antitumor activity

Journal of Medicinal Chemistry
1988.0

Abstract

N delta-Acyl derivatives of the potent folylpolyglutamate synthetase (FPGS) inhibitor N alpha-(4-amino-4-deoxypteroyl)-L-ornithine (APA-L-Orn) were synthesized from N alpha-(4-amino-4-deoxy-N10-formylpteroyl)-L-ornithine by reaction with an N-(acyloxy)succinimide or acyl anhydride, followed by deformylation with base. The N delta-hemiphthaloyl derivative was also prepared from 4-amino-4-deoxy-N10-formylpteroic acid by reaction with persilylated N delta-phthaloyl-L-ornithine, followed by simultaneous deformylation and ring opening of the N delta-phthaloyl moiety with base. The products were potent inhibitors of purified dihydrofolate reductase (DHFR) from L1210 murine leukemia cells, with IC50's ranging from 0.027 and 0.052 microM as compared with 0.072 microM for APA-L-Orn. Several of the N delta-acyl-N10-formyl intermediates also proved to be good DHFR inhibitors. One of them, N alpha-(4-amino-4-deoxy-N10-formylpteroyl)-N delta-(4-chlorobenzoyl)-L- ornithine, had a 2-fold lower IC50 than its deformylated product, confirming that the N10-formyl group is well tolerated for DHFR binding. While N delta-acylation of APA-L-Orn did not significantly alter anti-DHFR activity, inhibition of FPGS was dramatically diminished, supporting the view that the basic NH2 on the end of the APA-L-Orn side chain is essential for the activity of this compound against FPGS. N delta-Acylation of APA-L-Orn markedly enhanced toxicity to cultured tumor cells. However, N delta-acyl derivatives also containing an N10-formyl substituent were less cytotoxic than the corresponding N10-unsubstituted analogues even though their anti-DHFR activity was the same, suggesting that N10-formylation may be unfavorable for transport. Two compounds, the N delta-benzoyl and N delta-hemiphthaloyl derivatives of APA-L-Orn, with IC50's against L1210 cells of 0.89 and 0.75 nM, respectively, were more potent than either methotrexate (MTX) or aminopterin (AMT) in this system. These compounds were also more potent than MTX against CEM human lymphoblasts and two human head and neck squamous cell carcinoma cell lines (SCC15, SCC25) in culture. Moreover, in assays against SCC15/R1 and SCC25/R1 sublines with 10-20-fold MTX resistance, the N delta-hemiphthaloyl derivative of APA-L-Orn showed potency exceeding that of MTX itself against the parental cells.(ABSTRACT TRUNCATED AT 400 WORDS)

Knowledge Graph

Similar Paper

Methotrexate analogs. 33. N.delta.-Acyl-N.alpha.-(4-amino-4-deoxypteroyl)-L-ornithine derivatives. Synthesis and in vitro antitumor activity
Journal of Medicinal Chemistry 1988.0
Methotrexate analogs. 26. Inhibition of dihydrofolate reductase and folylpolyglutamate synthetase activity and in vitro tumor cell growth by methotrexate and aminopterin analogs containing a basic amino acid side chain
Journal of Medicinal Chemistry 1986.0
(6R,6S)-5,8,10-Trideaza-5,6,7,8-tetrahydrofolate and (6R,6S)-5,8,10-trideaza-5,6,7,8-tetrahydropteroyl-L-ornithine as potential antifolates and antitumor agents. 35
Journal of Medicinal Chemistry 1989.0
Synthesis and Biological Evaluation of N<sup>α</sup>-(4-Amino-4-deoxy-10-methylpteroyl)-<scp>dl</scp>-4,4-difluoroornithine
Journal of Medicinal Chemistry 1996.0
Inhibition of mammalian folylpolyglutamate synthetase and human dihydrofolate reductase by 5,8-dideaza analogs of folic acid and aminopterin bearing a terminal L-ornithine
Journal of Medicinal Chemistry 1989.0
Lysine and ornithine analogs of methotrexate as inhibitors of dihydrofolate reductase
Journal of Medicinal Chemistry 1982.0
Methotrexate analogs. 31. Meta and ortho isomers of aminopterin, compounds with a double bond in the side chain, and a novel analog modified at the .alpha.-carbon: chemical and in vitro biological studies
Journal of Medicinal Chemistry 1988.0
Synthesis and biological evaluation of N.alpha.-(5-deaza-5,6,7,8-tetrahydropteroyl)-L-ornithine
Journal of Medicinal Chemistry 1992.0
First use of the Taylor pteridine synthesis as a route to polyglutamate derivatives of antifolates. 46. Side chain modified 5-deazafolate and 5-deazatetrahydrofolate analogs as mammalian folylpolyglutamate synthetase and glycinamide ribonucleotide formyl transferase inhibitors: synthesis and in vitro biological evaluation
Journal of Medicinal Chemistry 1992.0
Folate analogs. 34. Synthesis and antitumor activity of non-polyglutamylatable inhibitors of dihydrofolate reductase
Journal of Medicinal Chemistry 1991.0