Calcium Entry Blockers and Activators: Conformational and Structural Determinants of Dihydropyrimidine Calcium Channel Modulators

Journal of Medicinal Chemistry
1995.0

Abstract

Dihydropyrimidines 4, 6, and 15, uniquely designed to unambiguously establish structural and conformational determinants for DHP receptor occupation and for modulation of calcium channel function, were prepared and examined for calcium channel modulation. Our results confirm and firmly establish a preference for syn-orientation of an unsymmetrically substituted aryl moiety at the DHP receptor (15d vs 15e). We propose a normal vs capsized DHP boat model to explain structural and conformational requirements for modulation of calcium channel function that requires an obligatory left-hand side alkoxy cis-carbonyl interaction for maximal DHP receptor affinity, the effect of channel function being determined by orientation of the 4-aryl group. Enantiomers having an up-oriented pseudoaxial aryl group (normal DHP boat) will elicit calcium antagonist activity, whereas enantiomers having a down-oriented pseudoaxial aryl group (capsized DHP boat) will elicit calcium agonist activity. Single enantiomers of macrocyclic lactone 15b demonstrate opposite channel activity. Antagonist activity resides in enantiomer 15b-A (S-configuration, left-hand side alkoxy cis-carbonyl with up-oriented pseudoaxial aryl group and normal DHP boat), whereas agonist activity resides in enantiomer 15b-B (R-configuration, left-hand side alkoxy cis-carbonyl with down-oriented pseudoaxial aryl group and capsized DHP boat). Moreover, this model is consistent with and provides a rational explanation of previous literature in this area, most notably the observation of chiral inversion and potency diminution upon replacement of ester by hydrogen in the Bay K 8644 series.

Knowledge Graph

Similar Paper

Calcium Entry Blockers and Activators: Conformational and Structural Determinants of Dihydropyrimidine Calcium Channel Modulators
Journal of Medicinal Chemistry 1995.0
Dihydropyrimidine calcium channel blockers. II. 3-Substituted-4-aryl-1,4-dihydro-6-methyl-5-pyrimidinecarboxylic acid esters as potent mimics of dihydropyridines
Journal of Medicinal Chemistry 1990.0
Studies directed toward ascertaining the active conformation of 1,4-dihydropyridine calcium entry blockers
Journal of Medicinal Chemistry 1988.0
Dihydropyrimidine calcium channel blockers. 4. Basic 3-substituted-4-aryl-1,4-dihydropyrimidine-5-carboxylic acid esters. Potent antihypertensive agents
Journal of Medicinal Chemistry 1992.0
Synthesis, calcium-channel blocking activity, and conformational analysis of some novel 1,4-dihydropyridines: application of PM3 and DFT computational methods
Medicinal Chemistry Research 2012.0
Crystal structures and pharmacological activity of calcium channel antagonists: 2,6-dimethyl-3,5-dicarbomethoxy-4-(unsubstituted, 3-methyl-, 4-methyl-, 3-nitro-, 4-nitro-, and 2,4-dinitrophenyl)-1,4-dihydropyridine
Journal of Medicinal Chemistry 1982.0
Synthesis, Rotamer Orientation, and Calcium Channel Modulation Activities of Alkyl and 2-Phenethyl 1,4-Dihydro-2,6-dimethyl-3-nitro-4-(3- or 6-substituted-2-pyridyl)-5-pyridinecarboxylates
Journal of Medicinal Chemistry 1998.0
Dihydropyrimidine calcium channel blockers 51: bicyclic dihydropyrimidines as potent mimics of dihydropyridines
Bioorganic & Medicinal Chemistry Letters 1991.0
Crystal structures of calcium channel antagonists: 2,6-dimethyl-3,5-dicarbomethoxy-4-[2-nitro-, 3-cyano-, 4-(dimethylamino)-, and 2,3,4,5,6-pentafluorophenyl]-1,4-dihydropyridine
Journal of Medicinal Chemistry 1980.0
Stereoselectivity of a potent calcium antagonist, 1-benzyl-3-pyrrolidinyl methyl 2,6-dimethyl-4-(m-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate
Journal of Medicinal Chemistry 1986.0