Effect of N9-Methylation and Bridge Atom Variation on the Activity of 5-Substituted 2,4-Diaminopyrrolo[2,3-d]pyrimidines against Dihydrofolate Reductases from Pneumocystis carinii and Toxoplasma gondii1a,b

Journal of Medicinal Chemistry
1997.0

Abstract

The effect of N9-methylation and bridge atom variation on inhibitory potency and selectivity of 2,4-diaminopyrrolo[2,3-d]pyrimidines against dihydrofolate reductases (DHFR) was studied. Specifically three nonclassical 2,4-diamino-5-((N-methylanilino)methyl)pyrrolo[2,3-d]pyrimidines with 2',5'-dimethoxyphenyl (2), 3',4'-dichlorophenyl (3), 1'-naphthyl (4), one classical analogue with a 4'-L-glutamate substituent (10), and four nonclassical 2,4-diamino-5-((phenylthio)methyl)pyrrolo[2,3-d]pyrimidines with 3',4'-dimethoxyphenyl (5), 3',4'-dichlorophenyl (6), 1'-naphthyl (7), and 2'-naphthyl (8) substituents were synthesized. The classical and nonclassical analogues were obtained by displacement of the intermediate 2,4-diamino-5-bromomethylpyrrolo[2,3-d]pyrimidine, 14, with appropriately substituted N-methylaniline, thiophenols, or 4-(N-methylamino)benzoyl-L-glutamate. Compounds 2-8 and 10 were evaluated against Pneumocystis carinii (pc), Toxoplasma gondii (tg), and rat liver (rl) DHFRs. The N-methyl and thiomethyl analogues were more inhibitory than their corresponding anilinomethyl analogues (previously reported) against all three DHFRs. The inhibitory potency of these analogues was greater against rlDHFR than against tgDHFR which resulted in a loss of selectivity for tgDHFR compared to the N9-H analogues. The classical N9-methyl analogue 10 was more potent and about 2-fold more selective against tgDHFR than its corresponding desmethyl analogue. All of the analogues, 2-8 and 10, were more selective than trimetrexate (TMQ) against pcDHFR (except 4) and significantly more selective than TMQ against tgDHFR.

Knowledge Graph

Similar Paper

Effect of N<sup>9</sup>-Methylation and Bridge Atom Variation on the Activity of 5-Substituted 2,4-Diaminopyrrolo[2,3-d]pyrimidines against Dihydrofolate Reductases from Pneumocystis carinii and Toxoplasma gondii<sup>1a,b</sup>
Journal of Medicinal Chemistry 1997.0
2,4-Diamino-5-deaza-6-Substituted Pyrido[2,3-d]pyrimidine Antifolates as Potent and Selective Nonclassical Inhibitors of Dihydrofolate Reductases
Journal of Medicinal Chemistry 1996.0
Novel 2,4-Diamino-5-substituted-pyrrolo[2,3-d]pyrimidines as Classical and Nonclassical Antifolate Inhibitors of Dihydrofolate Reductases
Journal of Medicinal Chemistry 1995.0
6-Substituted 2,4-Diaminopyrido[3,2-d]pyrimidine Analogues of Piritrexim as Inhibitors of Dihydrofolate Reductase from Rat Liver, Pneumocystis carinii, and Toxoplasma gondii and as Antitumor Agents
Journal of Medicinal Chemistry 1998.0
Pneumocystis carinii and Toxoplasma gondii Dihydrofolate Reductase Inhibitors and Antitumor Agents:  Synthesis and Biological Activities of 2,4-Diamino-5-methyl-6-[(monosubstituted anilino)methyl]- pyrido[2,3-d]pyrimidines
Journal of Medicinal Chemistry 1999.0
Nonclassical 2,4-Diamino-8-deazafolate Analogues as Inhibitors of Dihydrofolate Reductases from Rat Liver, Pneumocystis carinii, and Toxoplasma gondii
Journal of Medicinal Chemistry 1996.0
6-Substituted 2,4-Diamino-5-methylpyrido[2,3-d]pyrimidines as Inhibitors of Dihydrofolate Reductases from Pneumocystis carinii and Toxoplasma gondii and as Antitumor Agents
Journal of Medicinal Chemistry 1995.0
Synthesis and Biological Evaluation of Nonclassical 2,4-Diamino-5-methylpyrido[2,3-d]pyrimidines with Novel Side Chain Substituents as Potential Inhibitors of Dihydrofolate Reductases
Journal of Medicinal Chemistry 1997.0
2,4-Diaminopyrido[3,2-d]pyrimidine Inhibitors of Dihydrofolate Reductase from Pneumocystis carinii and Toxoplasma gondii
Journal of Medicinal Chemistry 1995.0
Synthesis of 5-methyl-5-deaza nonclassical antifolates as inhibitors of dihydrofolate reductases and as potential antipneumocystis, antitoxoplasma, and antitumor agents
Journal of Medicinal Chemistry 1993.0