Structure−Activity Relationships for the Binding of Arylpiperazines and Arylbiguanides at 5-HT3Serotonin Receptors

Journal of Medicinal Chemistry
1996.0

Abstract

Arylpiperazines are nonselective agents that bind at 5-HT3 serotonin receptors with moderate to high affinity, whereas 1-phenylbiguanide is a low-affinity but more selective 5-HT3 agonist. In an attempt to enhance the affinity of the latter agent, and working with the assumption that similarities might exist between the binding of the two types of agents, we formulated structure-activity relationships for the binding of the arylpiperazines and then incorporated those substituents, leading to high affinity for the arylpiperazines, into 1-phenylbiguanide. A subsequent investigation examined the structure-activity relationships of the arylbiguanides and identified arylguanidines as a novel class of 5-HT3 ligands. Although curious similarities exist between the structure-activity relationships of the arylpiperazines, arylbiguanides, and arylguanidines, it cannot be concluded that all three series of compounds are binding in the same manner. Furthermore, upon investigating pairs of compounds in the three series, the arylpiperazines behaved as 5-HT3 antagonists (von Bezold-Jarisch assay) whereas the arylbiguanides and arylguanidines acted as 5-HT3 agonists.

Knowledge Graph

Similar Paper

Structure−Activity Relationships for the Binding of Arylpiperazines and Arylbiguanides at 5-HT<sub>3</sub>Serotonin Receptors
Journal of Medicinal Chemistry 1996.0
Novel Potent and Selective Central 5-HT<sub>3</sub> Receptor Ligands Provided with Different Intrinsic Efficacy. 2. Molecular Basis of the Intrinsic Efficacy of Arylpiperazine Derivatives at the Central 5-HT<sub>3</sub> Receptors
Journal of Medicinal Chemistry 1999.0
Novel Potent and Selective Central 5-HT<sub>3</sub> Receptor Ligands Provided with Different Intrinsic Efficacy. 1. Mapping the Central 5-HT<sub>3</sub> Receptor Binding Site by Arylpiperazine Derivatives
Journal of Medicinal Chemistry 1998.0
Further Studies on the Interaction of the 5-Hydroxytryptamine<sub>3</sub>(5-HT<sub>3</sub>) Receptor with Arylpiperazine Ligands. Development of a New 5-HT<sub>3</sub>Receptor Ligand Showing Potent Acetylcholinesterase Inhibitory Properties
Journal of Medicinal Chemistry 2005.0
Novel and Selective Partial Agonists of 5-HT<sub>3</sub> Receptors. 2. Synthesis and Biological Evaluation of Piperazinopyridopyrrolopyrazines, Piperazinopyrroloquinoxalines, and Piperazinopyridopyrroloquinoxalines
Journal of Medicinal Chemistry 1997.0
Pyrroloquinoxaline Derivatives as High-Affinity and Selective 5-HT<sub>3</sub> Receptor Agonists:  Synthesis, Further Structure−Activity Relationships, and Biological Studies
Journal of Medicinal Chemistry 1999.0
Novel, Potent, and Selective 5-HT3 Receptor Antagonists Based on the Arylpiperazine Skeleton: Synthesis, Structure, Biological Activity, and Comparative Molecular Field Analysis Studies
Journal of Medicinal Chemistry 1995.0
Structure–activity relationships and molecular modeling studies of novel arylpiperazinylalkyl 2-benzoxazolones and 2-benzothiazolones as 5-HT7 and 5-HT1A receptor ligands
European Journal of Medicinal Chemistry 2014.0
Investigations on the 1-(2-Biphenyl)piperazine Motif: Identification of New Potent and Selective Ligands for the Serotonin<sub>7</sub> (5-HT<sub>7</sub>) Receptor with Agonist or Antagonist Action in Vitro or ex Vivo
Journal of Medicinal Chemistry 2012.0
Novel, Potent, and Selective Quinoxaline-Based 5-HT<sub>3</sub>Receptor Ligands. 1. Further Structure−Activity Relationships and Pharmacological Characterization
Journal of Medicinal Chemistry 2009.0