Synthesis and Pharmacology of Potential Cocaine Antagonists. 2. Structure−Activity Relationship Studies of Aromatic Ring-Substituted Methylphenidate Analogs

Journal of Medicinal Chemistry
1996.0

Abstract

As part of a program to develop medications which can block the binding of cocaine to the dopamine transporter, yet spare dopamine uptake, a series of aromatic ring-substituted methylphenidate derivatives was synthesized and tested for inhibitory potency in [3H]WIN 35,428 binding and [3H]dopamine uptake assays using rat striatal tissue. Synthesis was accomplished by alkylation of 2-bromopyridine with anions derived from various substituted phenylacetonitriles. In most cases, erythro compounds were markedly less potent than the corresponding (+/-)-threo-methylphenidate (TMP; Ritalin) derivatives. The ortho-substituted compounds were much less potent than the corresponding meta- and/or para-substituted derivatives. The most potent compound against [3H]WIN 35,428 binding, m-bromo-TMP, was 20-fold more potent than the parent compound, whereas the most potent compound against [3H]dopamine uptake, m,p-dichloro-TMP, was 32-fold more potent. Threo derivatives with m- or p-halo substituents were more potent than TMP, while electron-donating substituents caused little change or small loss of potency. All of the derivatives had Hill coefficients approaching unity, except m,p-dichloro-TMP, which had an nH of 2.0. Although the potency of the (+/-)-methylphenidate derivatives in the two assays was highly correlated (R2 = 0.986), the compounds m-chloro-,m-methyl-, and p-iodo-TMP were 4-5-fold more potent at inhibiting [3H]-WIN 35,428 binding than [3H]dopamine uptake (cocaine has a ratio of 2.3). These and other compounds may be promising candidates for further testing as potential partial agonists or antagonists of cocaine.

Knowledge Graph

Similar Paper

Synthesis and Pharmacology of Potential Cocaine Antagonists. 2. Structure−Activity Relationship Studies of Aromatic Ring-Substituted Methylphenidate Analogs
Journal of Medicinal Chemistry 1996.0
Synthesis and Evaluation of Dopamine and Serotonin Transporter Inhibition by Oxacyclic and Carbacyclic Analogues of Methylphenidate
Journal of Medicinal Chemistry 2003.0
2β-Substituted Analogues of 4‘-Iodococaine:  Synthesis and Dopamine Transporter Binding Potencies
Journal of Medicinal Chemistry 1998.0
Synthesis and Pharmacology of Site-Specific Cocaine Abuse Treatment Agents:  2-(Aminomethyl)-3-phenylbicyclo[2.2.2]- and -[2.2.1]alkane Dopamine Uptake Inhibitors
Journal of Medicinal Chemistry 1999.0
Synthesis of 3-carbamoylecgonine methyl ester analogs as inhibitors of cocaine binding and dopamine uptake
Journal of Medicinal Chemistry 1991.0
Synthesis, Dopamine Transporter Affinity, Dopamine Uptake Inhibition, and Locomotor Stimulant Activity of 2-Substituted 3β-Phenyltropane Derivatives
Journal of Medicinal Chemistry 1997.0
3‘-Chloro-3α-(diphenylmethoxy)tropane But Not 4‘-Chloro-3α- (diphenylmethoxy)tropane Produces a Cocaine-like Behavioral Profile
Journal of Medicinal Chemistry 1997.0
Synthesis of 3-arylecgonine analogs as inhibitors of cocaine binding and dopamine uptake
Journal of Medicinal Chemistry 1990.0
Methoxylation of cocaine reduces binding affinity and produces compounds of differential binding and dopamine uptake inhibitory activity: discovery of a weak cocaine "antagonist"
Journal of Medicinal Chemistry 1993.0
Synthesis and Ligand Binding Studies of 4‘-Iodobenzoyl Esters of Tropanes and Piperidines at the Dopamine Transporter
Journal of Medicinal Chemistry 1997.0