2β-Substituted Analogues of 4‘-Iodococaine:  Synthesis and Dopamine Transporter Binding Potencies

Journal of Medicinal Chemistry
1998.0

Abstract

A series of 2beta-substituted analogues of 4'-iodococaine (3) was synthesized and evaluated in an in vitro dopamine transporter (DAT) binding assay. Selective hydrolysis at the 2beta-position of 3 gave the carboxylic acid 15 that served as the intermediate for the synthesis of compounds 4, 5, and 6-11. The 2beta-alkyl derivatives were obtained from ecgonine methyl ester (17) through a series of reactions leading to the aldehyde 20. Wittig reaction of 20 with methyltriphenylphosphorane followed by hydrogenation and benzoylation gave the products 12 and 13. The binding affinity of 4'-iodococaine (3) was 10-fold less than that of cocaine. The hydroxymethane, acetate, amide, benzyl ester, oxidazole, and ethane derivatives of 3 exhibited decreased binding while the vinyl, phenyl, and ethyl esters showed a moderate increase in binding affinity. Only the isopropyl derivative 8 exhibited a 2-fold increase in binding affinity compared with 4'-iodococaine (3). Hydroxylation of 8 at the 2'-position gave 14 which enhanced not only the binding potency at the DAT by another 2-fold but also the selectivity at the DAT over the norepinephrine and serotonin transporters. Compound 14 failed to stimulate locomotor activity in C57BL/6J mice over a wide dose range and blocked cocaine-induced locomotor stimulant action.

Knowledge Graph

Similar Paper

2β-Substituted Analogues of 4‘-Iodococaine:  Synthesis and Dopamine Transporter Binding Potencies
Journal of Medicinal Chemistry 1998.0
Synthesis and Ligand Binding Studies of 4‘-Iodobenzoyl Esters of Tropanes and Piperidines at the Dopamine Transporter
Journal of Medicinal Chemistry 1997.0
Cocaine and 3.beta.-(4'-Substituted phenyl)tropane-2.beta.-carboxylic Acid Ester and Amide Analogs. New High-Affinity and Selective Compounds for the Dopamine Transporter
Journal of Medicinal Chemistry 1995.0
Synthesis, Dopamine Transporter Affinity, Dopamine Uptake Inhibition, and Locomotor Stimulant Activity of 2-Substituted 3β-Phenyltropane Derivatives
Journal of Medicinal Chemistry 1997.0
Synthesis and binding affinities of 2β-(3-iodoallyloxycarbonyl)-3β-(4-substituted-aryl)tropane analogues as ligands for the dopamine transporter studies
Bioorganic & Medicinal Chemistry Letters 2001.0
Secondary Amine Analogs of 3.beta.-(4'-Substituted phenyl)tropane-2.beta.-carboxylic Acid Esters and N-Norcocaine Exhibit Enhanced Affinity for Serotonin and Norepinephrine Transporters
Journal of Medicinal Chemistry 1994.0
Monoamine Transporter Binding, Locomotor Activity, and Drug Discrimination Properties of 3-(4-Substituted-phenyl)tropane-2-carboxylic Acid Methyl Ester Isomers
Journal of Medicinal Chemistry 2004.0
Synthesis and Pharmacology of Potential Cocaine Antagonists. 2. Structure−Activity Relationship Studies of Aromatic Ring-Substituted Methylphenidate Analogs
Journal of Medicinal Chemistry 1996.0
(−)-3β-Substituted Ecgonine Methyl Esters as Inhibitors for Cocaine Binding and Dopamine Uptake
Journal of Medicinal Chemistry 1998.0
Synthesis, Structure, Dopamine Transporter Affinity, and Dopamine Uptake Inhibition of 6-Alkyl-3-benzyl-2-[(methoxycarbonyl)methyl]tropane Derivatives
Journal of Medicinal Chemistry 1997.0