Synthesis and Pharmacology of Site-Specific Cocaine Abuse Treatment Agents:  2-(Aminomethyl)-3-phenylbicyclo[2.2.2]- and -[2.2.1]alkane Dopamine Uptake Inhibitors

Journal of Medicinal Chemistry
1999.0

Abstract

As part of a program to develop site-specific medications for cocaine abuse, a series of 2-(aminomethyl)-3-phenylbicyclo[2.2.2]- and -[2.2.1]alkane derivatives was synthesized and tested for inhibitory potency in [3H]WIN 35,428 binding and [3H]dopamine uptake assays using rat striatal tissue. Selected compounds were tested for their ability to substitute for cocaine in rat drug discrimination tests. Synthesis was accomplished by a series of Diels-Alder reactions, using cis- and trans-cinnamic acid derivatives (nitrile, acid, acid chloride) with cyclohexadiene and cyclopentadiene. Standard manipulations produced the aminomethyl side chain. Many of the compounds bound with high affinity (median IC50 = 223 nM) to the cocaine binding site as marked by [3H]WIN 35,428. Potency in the binding assay was strongly enhanced by chlorine atoms in the 3- and/or 4-position on the aromatic ring and was little affected by corresponding methoxy groups. In the [2.2.2] series there was little difference in potency between cis and trans compounds or between N, N-dimethylamines and primary amines. In the [2.2.1] series the trans exo compounds tended to be least potent against binding, whereas the cis exo compounds were the most potent (4-Cl cis exo: IC50 = 7.7 nM, 27-fold more potent than 4-Cl trans-exo). Although the potencies of the bicyclic derivatives in the binding and uptake assays were highly correlated, some of the compounds were 5-7-fold less potent at inhibiting [3H]dopamine uptake than [3H]WIN 35,428 binding (for comparison, cocaine has a lower discrimination ratio (DR) of 2.5). The DR values were higher for almost all primary amines and for the trans-[2.2.2] series as compared to the cis-[2.2.2]. Most of the compounds had Hill coefficients approaching unity, except for the [2. 2.2] 3,4-dichloro derivatives, which all had nH values of about 2.0. Two of the compounds were shown to fully substitute for cocaine in drug discrimination tests in rats, and one had a very long duration of action.

Knowledge Graph

Similar Paper

Synthesis and Pharmacology of Site-Specific Cocaine Abuse Treatment Agents:  2-(Aminomethyl)-3-phenylbicyclo[2.2.2]- and -[2.2.1]alkane Dopamine Uptake Inhibitors
Journal of Medicinal Chemistry 1999.0
Synthesis and Pharmacology of Site-Specific Cocaine Abuse Treatment Agents:  2-Substituted-6-amino-5-phenylbicyclo[2.2.2]octanes
Journal of Medicinal Chemistry 1999.0
Synthesis of 3-arylecgonine analogs as inhibitors of cocaine binding and dopamine uptake
Journal of Medicinal Chemistry 1990.0
Synthesis of 3-carbamoylecgonine methyl ester analogs as inhibitors of cocaine binding and dopamine uptake
Journal of Medicinal Chemistry 1991.0
Synthesis and Pharmacology of Potential Cocaine Antagonists. 2. Structure−Activity Relationship Studies of Aromatic Ring-Substituted Methylphenidate Analogs
Journal of Medicinal Chemistry 1996.0
Synthesis and Pharmacology of Site Specific Cocaine Abuse Treatment Agents:  8-Substituted Isotropane (3-Azabicyclo[3.2.1]octane) Dopamine Uptake Inhibitors
Journal of Medicinal Chemistry 2003.0
Synthesis and Dopamine Transporter Affinity of the Four Stereoisomers of (±)-2-(Methoxycarbonyl)-7-methyl-3-phenyl-7-azabicyclo[2.2.1]heptane
Journal of Medicinal Chemistry 1998.0
Synthesis and Dopamine Transporter Affinity of 2-(Methoxycarbonyl)-9-methyl-3-phenyl-9-azabicyclo[3.3.1]nonane Derivatives
Journal of Medicinal Chemistry 1996.0
Chemistry and Pharmacology of the Piperidine-Based Analogues of Cocaine. Identification of Potent DAT Inhibitors Lacking the Tropane Skeleton
Journal of Medicinal Chemistry 1998.0
2β-Substituted Analogues of 4‘-Iodococaine:  Synthesis and Dopamine Transporter Binding Potencies
Journal of Medicinal Chemistry 1998.0