Evolution of the Dmt-Tic Pharmacophore:  N-Terminal Methylated Derivatives with Extraordinary δ Opioid Antagonist Activity

Journal of Medicinal Chemistry
1997.0

Abstract

The delta opioid antagonist H-Dmt-Tic-OH (2',6'-dimethyl-L-tyrosyl-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid) exhibits extraordinary delta receptor binding characteristics [Ki delta = 0.022 nM; Ki mu/Ki delta = 150,000] and delta antagonism (pA2 = 8.2; Ke = 5.7 nM). A change in chirality of Dmt at C alpha (1, 2, 6, 8, 10, 13) curtailed delta receptor parameters, while replacement of its alpha-amino function by a methyl group (3) led to inactivity; Tyr-Tic analogues 4 and 11 weakly interacted with delta receptors. N-Alkylation of H-Dmt-Tic-OH and H-Dmt-Tic-Ala-OH with methyl groups produced potent delta-opioid ligands with high delta receptor binding capabilities and enhanced delta antagonism: (i) N-Me-Dmt-Tic-OH 5 had high delta opioid binding (Ki delta = 0.2 nM), elevated delta antagonism on mouse vas deferens (MVD) (pA2 = 8.5; Ke = 2.8 nM), and nondetectable mu activity with guinea pig ileum (GPI). (ii) N,N-Me2-Dmt-Tic-OH (12) was equally efficacious in delta receptor binding (Ki delta = 0.12 nM; Ki mu/Ki delta = 20000), but delta antagonism rose considerably (pA2 = 9.4; Ke = 0.28 nM) with weak mu antagonism (pA2 = 5.8; Ke = 1.58 microM; GPI/MVD = 1:5640). N-Me-(9) and N,N-Me2-Dmt-Tic-Ala-OH (15) also augmented delta opioid receptor binding, such that 15 demonstrated high affinity (Ki delta = 0.0755 nM) and selectivity (Ki mu/Ki delta = 20132) with exceptional antagonist activity on MVD (pA2 = 9.6; Ke = 0.22 nM) and weak antagonism on GPI (pA2 = 5.8; Ke = 1.58 microM; GPI/MVD = 1:7180). Although the amidated dimethylated dipeptide analogue 14 had high Ki delta (0.31 nM) and excellent antagonist activity (pA2 = 9.9; Ke = 0.12 nM), the increased activity toward mu receptors in the absence of a free acid function at the C-terminus revealed modest delta selectivity (Ki mu/Ki delta = 1655) and somewhat comparable bioactivity (GPI/MVD = 4500). Thus, the data demonstrate that N,N-(Me)2-Dmt-Tic-OH (12) and N,N-Me2-Dmt-Tic-Ala-OH (15) retained high delta receptor affinities and delta selectivities and acquired enhanced potency in pharmacological bioassays on MVD greater than that of other peptide or non-peptide delta antagonists.

Knowledge Graph

Similar Paper

Evolution of the Dmt-Tic Pharmacophore:  N-Terminal Methylated Derivatives with Extraordinary δ Opioid Antagonist Activity
Journal of Medicinal Chemistry 1997.0
Evaluation of the Dmt−Tic Pharmacophore:  Conversion of a Potent δ-Opioid Receptor Antagonist into a Potent δ Agonist and Ligands with Mixed Properties
Journal of Medicinal Chemistry 2002.0
Assessment of substitution in the second pharmacophore of Dmt-Tic analogues
Bioorganic & Medicinal Chemistry Letters 2000.0
Potent δ-Opioid Receptor Agonists Containing the Dmt−Tic Pharmacophore
Journal of Medicinal Chemistry 2002.0
Conversion of the Potent δ-Opioid Agonist H-Dmt-Tic-NH-CH<sub>2</sub>-Bid into δ-Opioid Antagonists by N-Benzimidazole Alkylation<sup>1</sup>
Journal of Medicinal Chemistry 2005.0
Effect of Lysine at C-Terminus of the Dmt-Tic Opioid Pharmacophore
Journal of Medicinal Chemistry 2006.0
Studies on the structure–activity relationship of 2′,6′-dimethyl-l-tyrosine (Dmt) derivatives: bioactivity profile of H–Dmt–NH–CH3
Bioorganic &amp; Medicinal Chemistry Letters 2005.0
Novel C-Terminus Modifications of the Dmt-Tic Motif:  A New Class of Dipeptide Analogues Showing Altered Pharmacological Profiles Toward the Opioid Receptors
Journal of Medicinal Chemistry 2001.0
[Dmt1]DALDA analogues modified with tyrosine analogues at position 1
Bioorganic &amp; Medicinal Chemistry Letters 2016.0
Discovery of a Potent and Efficacious Peptide Derivative for δ/μ Opioid Agonist/Neurokinin 1 Antagonist Activity with a 2′,6′-Dimethyl-<scp>l</scp>-Tyrosine: In vitro, In vivo, and NMR-Based Structural Studies
Journal of Medicinal Chemistry 2011.0