Rational Drug Design Approach for Overcoming Drug Resistance:  Application to Pyrimethamine Resistance in Malaria

Journal of Medicinal Chemistry
1998.0

Abstract

Pyrimethamine acts by selectively inhibiting malarial dihydrofolate reductase-thymidylate synthase (DHFR-TS). Resistance in the most important human parasite, Plasmodium falciparum, initially results from an S108N mutation in the DHFR domain, with additional mutation (most commonly C59R or N51I or both) imparting much greater resistance. From a homology model of the 3-D structure of DHFR-TS, rational drug design techniques have been used to design and subsequently synthesize inhibitors able to overcome malarial pyrimethamine resistance. Compared to pyrimethamine (Ki 1.5 nM) with purified recombinant DHFR fromP. falciparum, the Ki value of the m-methoxy analogue of pyrimethamine was 1.07 nM, but against the DHFR bearing the double mutation (C59R + S108N), the Ki values for pyrimethamine and the m-methoxy analogue were 71.7 and 14.0 nM, respectively. The m-chloro analogue of pyrimethamine was a stronger inhibitor of both wild-type DHFR (with Ki 0.30 nM) and the doubly mutant (C59R +S108N) purified enzyme (with Ki 2.40 nM). Growth of parasite cultures of P. falciparum in vitro was also strongly inhibited by these compounds with 50% inhibition of growth occurring at 3.7 microM for the m-methoxy and 0.6 microM for the m-chloro compounds with the K1 parasite line bearing the double mutation (S108N + C59R), compared to 10.2 microM for pyrimethamine. These inhibitors were also found in preliminary studies to retain antimalarial activity in vivo in P. berghei-infected mice.

Knowledge Graph

Similar Paper

Rational Drug Design Approach for Overcoming Drug Resistance:  Application to Pyrimethamine Resistance in Malaria
Journal of Medicinal Chemistry 1998.0
Development of 2,4-Diaminopyrimidines as Antimalarials Based on Inhibition of the S108N and C59R+S108N Mutants of Dihydrofolate Reductase from Pyrimethamine-Resistant Plasmodium falciparum
Journal of Medicinal Chemistry 2002.0
Inhibitors of Multiple Mutants of Plasmodium falciparum Dihydrofolate Reductase and Their Antimalarial Activities
Journal of Medicinal Chemistry 2004.0
Target Guided Synthesis of 5-Benzyl-2,4-diamonopyrimidines: Their Antimalarial Activities and Binding Affinities to Wild Type and Mutant Dihydrofolate Reductases from Plasmodium falciparum
Journal of Medicinal Chemistry 2004.0
Hybrid Inhibitors of Malarial Dihydrofolate Reductase with Dual Binding Modes That Can Forestall Resistance
ACS Medicinal Chemistry Letters 2018.0
Probing the molecular basis of resistance to pyrimethamine by site-directed mutagenesis
Journal of Medicinal Chemistry 1992.0
Conflicting Requirements of Plasmodium falciparum Dihydrofolate Reductase Mutations Conferring Resistance to Pyrimethamine-WR99210 Combination
Antimicrobial Agents and Chemotherapy 2007.0
6-Hydrophobic aromatic substituent pyrimethamine analogues as potential antimalarials for pyrimethamine-resistant Plasmodium falciparum
Bioorganic & Medicinal Chemistry 2019.0
Development of a Lead Inhibitor for the A16V+S108T Mutant of Dihydrofolate Reductase from the Cycloguanil-Resistant Strain (T9/94) of Plasmodium falciparum<sup>†</sup>
Journal of Medicinal Chemistry 2000.0
Flexible diaminodihydrotriazine inhibitors of Plasmodium falciparum dihydrofolate reductase: Binding strengths, modes of binding and their antimalarial activities
European Journal of Medicinal Chemistry 2020.0