Target Guided Synthesis of 5-Benzyl-2,4-diamonopyrimidines: Their Antimalarial Activities and Binding Affinities to Wild Type and Mutant Dihydrofolate Reductases from Plasmodium falciparum

Journal of Medicinal Chemistry
2004.0

Abstract

The resistance to pyrimethamine (PYR) of Plasmodium falciparum arising from mutation at position 108 of dihydrofolate reductase (pfDHFR) from serine to asparagine (S108N) is due to steric interaction between the bulky side chain of N108 and Cl atom of the 5-p-Cl aryl group of PYR, which consequently resulted in the reduction in binding affinity between the enzyme and inhibitor. Molecular modeling suggested that the flexible antifolate, such as trimethoprim (TMP) derivatives, could avoid this steric constraint and should be considered as new, potentially effective compounds. The hydrophobic interaction between the side chain of inhibitor and the active site of the enzyme around position 108 was enhanced by the introduction of a longer and more hydrophobic side chain on TMP's 5-benzyl moiety. The prepared compounds, especially those bearing aromatic substituents, exhibited better binding affinities to both wild type and mutant enzymes than the parent compound. Binding affinities of these compounds correlated well with their antimalarial activities against both wild type and resistant parasites. Molecular modeling of the binding of such compounds with pfDHFR also supported the experimental data and clearly showed that aromatic substituents play an important role in enhancing binding affinity. In addition, some compounds with 6-alkyl substituents showed relatively less decrease in binding constants with the mutant enzymes and relatively good antimalarial activities against the parasites bearing the mutant enzymes.

Knowledge Graph

Similar Paper

Target Guided Synthesis of 5-Benzyl-2,4-diamonopyrimidines: Their Antimalarial Activities and Binding Affinities to Wild Type and Mutant Dihydrofolate Reductases from Plasmodium falciparum
Journal of Medicinal Chemistry 2004.0
Development of 2,4-Diaminopyrimidines as Antimalarials Based on Inhibition of the S108N and C59R+S108N Mutants of Dihydrofolate Reductase from Pyrimethamine-Resistant Plasmodium falciparum
Journal of Medicinal Chemistry 2002.0
6-Hydrophobic aromatic substituent pyrimethamine analogues as potential antimalarials for pyrimethamine-resistant Plasmodium falciparum
Bioorganic & Medicinal Chemistry 2019.0
Flexible diaminodihydrotriazine inhibitors of Plasmodium falciparum dihydrofolate reductase: Binding strengths, modes of binding and their antimalarial activities
European Journal of Medicinal Chemistry 2020.0
Inhibitors of Multiple Mutants of Plasmodium falciparum Dihydrofolate Reductase and Their Antimalarial Activities
Journal of Medicinal Chemistry 2004.0
Hybrid Inhibitors of Malarial Dihydrofolate Reductase with Dual Binding Modes That Can Forestall Resistance
ACS Medicinal Chemistry Letters 2018.0
Rational Drug Design Approach for Overcoming Drug Resistance:  Application to Pyrimethamine Resistance in Malaria
Journal of Medicinal Chemistry 1998.0
Docking and Database Screening Reveal New Classes ofPlasmodiumfalciparumDihydrofolate Reductase Inhibitors
Journal of Medicinal Chemistry 2003.0
Molecular modeling studies, synthesis and biological evaluation of derivatives of N-phenylbenzamide as Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) inhibitors
Medicinal Chemistry Research 2011.0
Development of a Lead Inhibitor for the A16V+S108T Mutant of Dihydrofolate Reductase from the Cycloguanil-Resistant Strain (T9/94) of Plasmodium falciparum<sup>†</sup>
Journal of Medicinal Chemistry 2000.0