Development of 2,4-Diaminopyrimidines as Antimalarials Based on Inhibition of the S108N and C59R+S108N Mutants of Dihydrofolate Reductase from Pyrimethamine-Resistant Plasmodium falciparum

Journal of Medicinal Chemistry
2002.0

Abstract

The reduced binding of pyrimethamine to Ser108Asn (S108N) mutants of parasite dihydrofolate reductase (DHFR), which forms the basis of resistance of Plasmodium falciparum to pyrimethamine, is largely due to steric constraint imposed by the bulky side chain of N108 on Cl of the 5-p-Cl-phenyl group. This and other S108 mutants with bulky side chains all showed reduced binding to pyrimethamine and cycloguanil. Less effect on binding to some bulky mutants was observed for trimethoprim, with greater flexibility for the 5-substituent. S108N DHFR also binds poorly with other pyrimethamine derivatives with bulky groups in place of the p-Cl, and the binding was generally progressively poorer for the double (C59R+S108N) mutant. Removal of the p-Cl or replacement with m-Cl led to better binding with the mutant DHFRs. Pyrimethamine analogues with unbranched hydrophobic 6-substituents showed generally good binding with the mutant DHFRs. A number of compounds were identified with high affinities for both wild-type and mutant DHFRs, with very low to no affinity to human DHFR. Some of these compounds show good antimalarial activities against pyrimethamine-resistant P. falciparum containing the mutant DHFRs with low cytotoxicity to three mammalian cell lines.

Knowledge Graph

Similar Paper

Development of 2,4-Diaminopyrimidines as Antimalarials Based on Inhibition of the S108N and C59R+S108N Mutants of Dihydrofolate Reductase from Pyrimethamine-Resistant Plasmodium falciparum
Journal of Medicinal Chemistry 2002.0
Target Guided Synthesis of 5-Benzyl-2,4-diamonopyrimidines: Their Antimalarial Activities and Binding Affinities to Wild Type and Mutant Dihydrofolate Reductases from Plasmodium falciparum
Journal of Medicinal Chemistry 2004.0
Inhibitors of Multiple Mutants of Plasmodium falciparum Dihydrofolate Reductase and Their Antimalarial Activities
Journal of Medicinal Chemistry 2004.0
Development of a Lead Inhibitor for the A16V+S108T Mutant of Dihydrofolate Reductase from the Cycloguanil-Resistant Strain (T9/94) of Plasmodium falciparum<sup>†</sup>
Journal of Medicinal Chemistry 2000.0
Flexible diaminodihydrotriazine inhibitors of Plasmodium falciparum dihydrofolate reductase: Binding strengths, modes of binding and their antimalarial activities
European Journal of Medicinal Chemistry 2020.0
Rational Drug Design Approach for Overcoming Drug Resistance:  Application to Pyrimethamine Resistance in Malaria
Journal of Medicinal Chemistry 1998.0
Hybrid Inhibitors of Malarial Dihydrofolate Reductase with Dual Binding Modes That Can Forestall Resistance
ACS Medicinal Chemistry Letters 2018.0
6-Hydrophobic aromatic substituent pyrimethamine analogues as potential antimalarials for pyrimethamine-resistant Plasmodium falciparum
Bioorganic &amp; Medicinal Chemistry 2019.0
Probing the molecular basis of resistance to pyrimethamine by site-directed mutagenesis
Journal of Medicinal Chemistry 1992.0
Conflicting Requirements of Plasmodium falciparum Dihydrofolate Reductase Mutations Conferring Resistance to Pyrimethamine-WR99210 Combination
Antimicrobial Agents and Chemotherapy 2007.0