WB 4101-Related Compounds. 2. Role of the Ethylene Chain Separating Amine and Phenoxy Units on the Affinity for α1-Adrenoreceptor Subtypes and 5-HT1A Receptors

Journal of Medicinal Chemistry
1999.0

Abstract

WB 4101 (1)-related benzodioxanes were synthesized by replacing the ethylene chain separating the amine and the phenoxy units of 1 with a cyclopentanol moiety, a feature of 6, 7-dihydro-5-[[(cis-2-hydroxy-trans-3-phenoxycyclopentyl)amino]meth yl] -2-methylbenzo[b]thiophen-4(5H)-one that was reported to display an intriguing selectivity profile at alpha(1)-adrenoreceptors. This synthesis strategy led to 4 out of 16 possible stereoisomers, which were isolated in the case of (-)-3, (+)-3, (-)-4, and (+)-4 and whose absolute configuration was assigned using a chiral building block for the synthesis of (-)-3 starting from (+)-(2R)-2, 3-dihydro-1,4-benzodioxine-2-carboxylic acid ((+)-9) and (1S,2S, 5S)-2-amino-5-phenoxycyclopentan-1-ol ((+)-10). The aim of this project was to further investigate whether it is possible to differentiate between these compounds with respect to their affinity for alpha(1)-adrenoreceptor subtypes and the affinity for 5-HT(1A) receptors, as 1 binds with high affinity at both receptor systems. The biological profiles of reported compounds at alpha(1)-adrenoreceptor subtypes were assessed by functional experiments in isolated rat vas deferens (alpha(1A)), spleen (alpha(1B)), and aorta (alpha(1D)) and by binding assays in CHO and HeLa cells membranes expressing the human cloned alpha(1)-adrenoreceptor subtypes and 5-HT(1A) receptors, respectively. Furthermore, the functional activity of (-)-3, (+)-3, (-)-4, and (+)-4 toward 5-HT(1A) receptors was evaluated by determining the induced stimulation of [(35)S]GTPgammaS binding in cell membranes from HeLa cells transfected with human cloned 5-HT(1A) receptors. The configuration of the cyclopentane unit determined the affinity profile: a 1R configuration, as in (+)-3 and (-)-4, conferred higher affinity at alpha(1)-adrenoreceptors, whereas a 1S configuration, as in (-)-3 and (+)-4, produced higher affinity for 5-HT(1A) receptors. For the enantiomers (+)-4 and (-)-4 also a remarkable selectivity was achieved. Functionally, the stereoisomers displayed a similar alpha(1)-selectivity profile, that is alpha(1D) > alpha(1B) > alpha(1A), which is different from that exhibited by the reference compound 1. The epimers (-)-3 and (+)-4 proved to be agonists at the 5-HT(1A) receptors, with a potency comparable to that of 5-hydroxytryptamine.

Knowledge Graph

Similar Paper

WB 4101-Related Compounds. 2. Role of the Ethylene Chain Separating Amine and Phenoxy Units on the Affinity for α<sub>1</sub>-Adrenoreceptor Subtypes and 5-HT<sub>1A</sub> Receptors
Journal of Medicinal Chemistry 1999.0
Structure−Activity Relationships in 1,4-Benzodioxan-Related Compounds. 6. Role of the Dioxane Unit on Selectivity for α<sub>1</sub>-Adrenoreceptor Subtypes
Journal of Medicinal Chemistry 1999.0
Structure−Activity Relationships in 1,4-Benzodioxan-Related Compounds. 9. From 1,4-Benzodioxane to 1,4-Dioxane Ring as a Promising Template of Novel α<sub>1D</sub>-Adrenoreceptor Antagonists, 5-HT<sub>1A</sub>Full Agonists, and Cytotoxic Agents
Journal of Medicinal Chemistry 2008.0
2-[[[2-(2,6-Dimethoxyphenoxy)ethyl]amino]methyl]-1,4-benzoxathian: a new antagonist with high potency and selectivity towards .alpha.1-adrenoreceptors
Journal of Medicinal Chemistry 1984.0
Structure–Activity Relationships in 1,4-Benzodioxan-Related Compounds. 11. Reversed Enantioselectivity of 1,4-Dioxane Derivatives in α<sub>1</sub>-Adrenergic and 5-HT<sub>1A</sub> Receptor Binding Sites Recognition
Journal of Medicinal Chemistry 2013.0
Synthesis and Structure−Activity Relationships of a New Model of Arylpiperazines. 4. 1-[ω-(4-Arylpiperazin-1-yl)alkyl]-3-(diphenylmethylene)- 2,5-pyrrolidinediones and -3-(9H-fluoren-9-ylidene)-2,5-pyrrolidinediones: Study of the Steric Requirements of the Terminal Amide Fragment on 5-HT<sub>1A</sub> Affinity/Selectivity
Journal of Medicinal Chemistry 1999.0
1-Aryl-4-[(5-methoxy-1,2,3,4-tetrahydronaphthalen-1-yl)alkyl]piperazines and Their Analogues:  Influence of the Stereochemistry of the Tetrahydronaphthalen-1-yl Nucleus on 5-HT<sub>1A</sub> Receptor Affinity and Selectivity versus α<sub>1</sub> and D<sub>2</sub> Receptors. 5
Journal of Medicinal Chemistry 1999.0
New (2-Methoxyphenyl)piperazine Derivatives as 5-HT1A Receptor Ligands with Reduced .alpha.1-Adrenergic Activity. Synthesis and Structure-Affinity Relationships
Journal of Medicinal Chemistry 1995.0
Structure−Activity Relationship Studies on the 5-HT<sub>1A</sub> Receptor Affinity of 1-Phenyl-4-[ω-(α- or β-tetralinyl)alkyl]piperazines. 4
Journal of Medicinal Chemistry 1996.0
Characterization of Potent and Selective Antagonists at Postsynaptic 5-HT1A Receptors in a Series of N4-Substituted Arylpiperazines
Journal of Medicinal Chemistry 1995.0