New Tacrine−Huperzine A Hybrids (Huprines):  Highly Potent Tight-Binding Acetylcholinesterase Inhibitors of Interest for the Treatment of Alzheimer's Disease

Journal of Medicinal Chemistry
2000.0

Abstract

Several new 12-amino-6,7,10,11-tetrahydro-7, 11-methanocycloocta[b]quinoline derivatives (tacrine-huperzine A hybrids, huprines) have been synthesized and tested as acetylcholinesterase (AChE) inhibitors. All of the new compounds contain either a methyl or ethyl group at position 9 and one or two (chloro, fluoro, or methyl) substituents at positions 1, 2, or 3. Among the monosubstituted derivatives, the more active are those substituted at position 3, their activity following the order 3-chloro > 3-fluoro > 3-methyl > 3-hydrogen. For the 1,3-difluoro and 1,3-dimethyl derivatives, the effect of the substituents is roughly additive. No significant differences were observed for the inhibitory activity of 9-methyl vs 9-ethyl derivatives mono- or disubstituted at positions 1 and/or 3. The levorotatory enantiomers of these hybrid compounds are much more active (eutomers) than the dextrorotatory forms (distomers) as AChE inhibitors. Compounds rac-20, (-)-20, rac-26, (-)-26, rac-30, (-)-30, and rac-31 showed human AChE inhibitory activities up to 28.5-fold higher than for the corresponding bovine enzyme. Also, rac-19, (-)-20, (-)-30, and rac-31 were very selective for human AChE vs butyrylcholinesterase (BChE), the AChE inhibitory activities being 438-871-fold higher than for BChE. Several hybrid compounds, specially (-)-20 and (-)-30, exhibited tight-binding character, showing higher activity after incubation of the enzyme with the inhibitor than without incubation, though the reversible nature of the enzyme-inhibitor interaction was demonstrated by dialysis. The results of the ex vivo experiments also supported the tight-binding character of compounds (-)-20 and (-)-30 and showed their ability to cross the blood-brain barrier. Molecular modeling simulations of the AChE-inhibitor complex provided a basis to explain the differences in inhibitory activity of these compounds.

Knowledge Graph

Similar Paper

New Tacrine−Huperzine A Hybrids (Huprines):  Highly Potent Tight-Binding Acetylcholinesterase Inhibitors of Interest for the Treatment of Alzheimer's Disease
Journal of Medicinal Chemistry 2000.0
Synthesis, in Vitro Pharmacology, and Molecular Modeling of Very Potent Tacrine−Huperzine A Hybrids as Acetylcholinesterase Inhibitors of Potential Interest for the Treatment of Alzheimer's Disease
Journal of Medicinal Chemistry 1999.0
Discovery of Huperzine A−Tacrine Hybrids as Potent Inhibitors of Human Cholinesterases Targeting Their Midgorge Recognition Sites
Journal of Medicinal Chemistry 2006.0
Potent, easily synthesized huperzine A-tacrine hybrid acetylcholinesterase inhibitors
Bioorganic & Medicinal Chemistry Letters 1999.0
Synthesis and Biological Evaluation of Novel Tacrine Derivatives and Tacrine–Coumarin Hybrids as Cholinesterase Inhibitors
Journal of Medicinal Chemistry 2014.0
Synthesis and Pharmacological Evaluation of Huprine−Tacrine Heterodimers:  Subnanomolar Dual Binding Site Acetylcholinesterase Inhibitors
Journal of Medicinal Chemistry 2005.0
Synthesis, in Vitro Pharmacology, and Molecular Modeling of syn-Huprines as Acetylcholinesterase Inhibitors
Journal of Medicinal Chemistry 2001.0
New tetracyclic tacrine analogs containing pyrano[2,3-c]pyrazole: Efficient synthesis, biological assessment and docking simulation study
European Journal of Medicinal Chemistry 2015.0
A tacrine-tetrahydroquinoline heterodimer potently inhibits acetylcholinesterase activity and enhances neurotransmission in mice
European Journal of Medicinal Chemistry 2021.0
Novel Tacrine–Benzofuran Hybrids as Potent Multitarget-Directed Ligands for the Treatment of Alzheimer’s Disease: Design, Synthesis, Biological Evaluation, and X-ray Crystallography
Journal of Medicinal Chemistry 2016.0