Discovery of Huperzine A−Tacrine Hybrids as Potent Inhibitors of Human Cholinesterases Targeting Their Midgorge Recognition Sites

Journal of Medicinal Chemistry
2006.0

Abstract

We describe herein the development of novel huperzine A-tacrine hybrids characterized by 3-methylbicyclo[3.3.1]non-3-ene scaffolds. These compounds were specifically designed to establish tight interactions, through different binding modes, with the midgorge recognition sites of human acetylcholinesterase (hAChE: Y72, D74) and human butyrylcholinesterase (hBuChE: N68, D70) and their catalytic or peripheral sites. Compounds 5a-c show a markedly improved biological profile relative to tacrine and huperzine A.

Knowledge Graph

Similar Paper

Discovery of Huperzine A−Tacrine Hybrids as Potent Inhibitors of Human Cholinesterases Targeting Their Midgorge Recognition Sites
Journal of Medicinal Chemistry 2006.0
Potent, easily synthesized huperzine A-tacrine hybrid acetylcholinesterase inhibitors
Bioorganic & Medicinal Chemistry Letters 1999.0
Synthesis, in Vitro Pharmacology, and Molecular Modeling of Very Potent Tacrine−Huperzine A Hybrids as Acetylcholinesterase Inhibitors of Potential Interest for the Treatment of Alzheimer's Disease
Journal of Medicinal Chemistry 1999.0
New Tacrine−Huperzine A Hybrids (Huprines):  Highly Potent Tight-Binding Acetylcholinesterase Inhibitors of Interest for the Treatment of Alzheimer's Disease
Journal of Medicinal Chemistry 2000.0
Synthesis and Biological Evaluation of Novel Tacrine Derivatives and Tacrine–Coumarin Hybrids as Cholinesterase Inhibitors
Journal of Medicinal Chemistry 2014.0
Synthesis and Pharmacological Evaluation of Huprine−Tacrine Heterodimers:  Subnanomolar Dual Binding Site Acetylcholinesterase Inhibitors
Journal of Medicinal Chemistry 2005.0
Specific Targeting of Acetylcholinesterase and Butyrylcholinesterase Recognition Sites. Rational Design of Novel, Selective, and Highly Potent Cholinesterase Inhibitors
Journal of Medicinal Chemistry 2003.0
Development of Molecular Probes for the Identification of Extra Interaction Sites in the Mid-Gorge and Peripheral Sites of Butyrylcholinesterase (BuChE). Rational Design of Novel, Selective, and Highly Potent BuChE Inhibitors
Journal of Medicinal Chemistry 2005.0
Pyrano[3,2-c]quinoline−6-Chlorotacrine Hybrids as a Novel Family of Acetylcholinesterase- and β-Amyloid-Directed Anti-Alzheimer Compounds
Journal of Medicinal Chemistry 2009.0
Study on dual-site inhibitors of acetylcholinesterase: Highly potent derivatives of bis- and bifunctional huperzine B
Bioorganic & Medicinal Chemistry 2007.0