Synthesis and Pharmacological Evaluation of 1-[(1,2-Diphenyl-1H-4-imidazolyl)methyl]-4-phenylpiperazines with Clozapine-Like Mixed Activities at Dopamine D2, Serotonin, and GABAAReceptors

Journal of Medicinal Chemistry
2002.0

Abstract

A series of 18 1-[(1,2-diphenyl-1H-4-imidazolyl)methyl]-4-piperazines (1a-r) were designed and synthesized as possible ligands with mixed dopamine (DA) D(2)/serotonin 5-HT(1A) affinity, with the aim of identifying novel compounds with neurochemical and pharmacological properties similar to those of clozapine. The binding profile at D(2) like, 5-HT(1A), and 5-HT(2A) receptors of title compounds was determined. Modifications made in the phenyl rings of the parent compound (1a) produced congeners endowed with a broad range of binding affinities for DA D(2) like, serotonin 5-HT(1A), and 5-HT(2A) receptors, with IC(50) values ranging from 25 to >10,000 nM. As for the modification of the piperazine N(4)-phenyl ring, the affinities for both D(2) like and 5-HT(1A) receptors were progressively increased by introduction of ortho-methoxy and ethoxy groups (1b,o, respectively). Data revealed the presence of a para-chloro substituent in 1g to be associated with a relatively high affinity and substantial selectivity for D(2) like receptors, whereas the meta-chloro analogue 1f exhibited preferential affinity for 5-HT(1A) receptors. A quantitative structure-affinity relationship analysis of the measured binding data resulted in regression equations that highlighted substituent physicochemical properties modulating the binding to subtypes 1A and 2A of serotonin 5-HT receptors but not to D(2) like receptors. Thus, besides an electron-withdrawing field effect and ortho substitution, which both influence binding to serotonin 5-HT receptor subtypes, though to a different extent as revealed by regression coefficients in the multiparametric regression equations, the affinity of congeners 1a-r to 5-HT(1A) receptors proved to be linearly correlated with volume/polarizability descriptors, whereas their affinity to 5-HT(2A) receptors correlated with lipophilicity constants through a parabolic relationship. 1-[(1,2-Diphenyl-1H-4-imidazolyl)methyl]-4-(2-methoxyphenyl)piperazine (1b), with a D(2)/5-HT(1A) IC(50) ratio of approximately 1, was selected for a further pharmacological study. In rats, the intraperitoneal administration of compound 1b, like that of clozapine, induced an increase in the extracellular concentration of DA measured in the medial prefrontal cortex. Furthermore, 1b and clozapine each inhibited GABA-evoked Cl(-) currents at recombinant GABA(A) receptors expressed in Xenopus oocytes. These findings suggest that compound 1b may represent an interesting prototype of a novel class of drugs endowed with a neurochemical profile similar to that of atypical antipsychotics.

Knowledge Graph

Similar Paper

Synthesis and Pharmacological Evaluation of 1-[(1,2-Diphenyl-1H-4-imidazolyl)methyl]-4-phenylpiperazines with Clozapine-Like Mixed Activities at Dopamine D<sub>2</sub>, Serotonin, and GABA<sub>A</sub>Receptors
Journal of Medicinal Chemistry 2002.0
New Pyridobenzodiazepine Derivatives:  Modifications of the Basic Side Chain Differentially Modulate Binding to Dopamine (D<sub>4.2</sub>, D<sub>2L</sub>) and Serotonin (5-HT<sub>2A</sub>) Receptors
Journal of Medicinal Chemistry 2002.0
New pyridobenzodiazepine derivatives as potential antipsychotics: synthesis and neurochemical study
Journal of Medicinal Chemistry 1993.0
Synthesis of New Arylpiperazinylalkylthiobenzimidazole, Benzothiazole, or Benzoxazole Derivatives as Potent and Selective 5-HT<sub>1A</sub> Serotonin Receptor Ligands
Journal of Medicinal Chemistry 2008.0
Synthesis and Structure−Activity Relationships of a New Model of Arylpiperazines. 4. 1-[ω-(4-Arylpiperazin-1-yl)alkyl]-3-(diphenylmethylene)- 2,5-pyrrolidinediones and -3-(9H-fluoren-9-ylidene)-2,5-pyrrolidinediones: Study of the Steric Requirements of the Terminal Amide Fragment on 5-HT<sub>1A</sub> Affinity/Selectivity
Journal of Medicinal Chemistry 1999.0
Polycyclic aryl- and heteroarylpiperazinyl imides as 5-HT1A receptor ligands and potential anxiolytic agents: synthesis and structure-activity relationship studies
Journal of Medicinal Chemistry 1988.0
Pyridobenzoxazepine and Pyridobenzothiazepine Derivatives as Potential Central Nervous System Agents: Synthesis and Neurochemical Study
Journal of Medicinal Chemistry 1994.0
Synthesis and pharmacological evaluation of new N-phenylpiperazine derivatives designed as homologues of the antipsychotic lead compound LASSBio-579
European Journal of Medicinal Chemistry 2013.0
New Pyridobenzoxazepine Derivatives Derived from 5-(4-Methylpiperazin-1-yl)-8-chloro-pyrido[2,3-b][1,5]benzoxazepine (JL13): Chemical Synthesis and Pharmacological Evaluation
Journal of Medicinal Chemistry 2012.0
Structure–activity relationships and molecular studies of novel arylpiperazinylalkyl purine-2,4-diones and purine-2,4,8-triones with antidepressant and anxiolytic-like activity
European Journal of Medicinal Chemistry 2015.0