Synthesis and pharmacological evaluation of new N-phenylpiperazine derivatives designed as homologues of the antipsychotic lead compound LASSBio-579

European Journal of Medicinal Chemistry
2013.0

Abstract

In an attempt to increase the affinity of our antipsychotic lead compound LASSBio-579 (1-((1-(4-chlorophenyl)-1H-pyrazol-4-yl)methyl)-4-phenylpiperazine; (2)) for the 5-HT(2A) receptor, we synthesized five new N-phenylpiperazine derivatives using a linear synthetic route and the homologation strategy. The binding profile of these compounds was evaluated for a series of dopaminergic, serotonergic and alpha-adrenergic receptors relevant for schizophrenia, using classical competition assays. Increasing the length of the spacer between the functional groups of (2) proved to be appropriated since the affinity of these compounds increased 3-10-fold for the 5-HT(2A) receptor, with no relevant change in the affinity for the D₂-like and 5-HT(1A) receptors. A GTP-shift assay also indicated that the most promising derivative (1-(4-(1-(4-chlorophenyl)-1H-pyrazol-4-yl) butyl)-4-phenylpiperazine) (LASSBio-1635) (6) has the expected efficacy at the 5-HT(2A) receptors, acting as an antagonist. Intraperitoneal administration of (6) prevented apomorphine-induced climbing behavior and ketamine-induced hyperlocomotion in mice, in a dose dependent manner. Together, these results show that (6) could be considered as a new antipsychotic lead compound.

Knowledge Graph

Similar Paper

Synthesis and pharmacological evaluation of new N-phenylpiperazine derivatives designed as homologues of the antipsychotic lead compound LASSBio-579
European Journal of Medicinal Chemistry 2013.0
Synthesis and Biological Investigation of Coumarin Piperazine (Piperidine) Derivatives as Potential Multireceptor Atypical Antipsychotics
Journal of Medicinal Chemistry 2013.0
New Pyridobenzoxazepine Derivatives Derived from 5-(4-Methylpiperazin-1-yl)-8-chloro-pyrido[2,3-b][1,5]benzoxazepine (JL13): Chemical Synthesis and Pharmacological Evaluation
Journal of Medicinal Chemistry 2012.0
Design and synthesis of new homo and hetero bis-piperazinyl-1-propanone derivatives as 5-HT7R selective ligands over 5-HT1AR
Bioorganic & Medicinal Chemistry Letters 2016.0
New pyridobenzodiazepine derivatives as potential antipsychotics: synthesis and neurochemical study
Journal of Medicinal Chemistry 1993.0
New (2-Methoxyphenyl)piperazine Derivatives as 5-HT1A Receptor Ligands with Reduced .alpha.1-Adrenergic Activity. Synthesis and Structure-Affinity Relationships
Journal of Medicinal Chemistry 1995.0
New Pyridobenzodiazepine Derivatives:  Modifications of the Basic Side Chain Differentially Modulate Binding to Dopamine (D<sub>4.2</sub>, D<sub>2L</sub>) and Serotonin (5-HT<sub>2A</sub>) Receptors
Journal of Medicinal Chemistry 2002.0
SAR-studies on the importance of aromatic ring topologies in search for selective 5-HT7 receptor ligands among phenylpiperazine hydantoin derivatives
European Journal of Medicinal Chemistry 2014.0
Synthesis and Biological Evaluation of Fused Tricyclic Heterocycle Piperazine (Piperidine) Derivatives As Potential Multireceptor Atypical Antipsychotics
Journal of Medicinal Chemistry 2018.0
Synthesis and Pharmacological Evaluation of 1-[(1,2-Diphenyl-1H-4-imidazolyl)methyl]-4-phenylpiperazines with Clozapine-Like Mixed Activities at Dopamine D<sub>2</sub>, Serotonin, and GABA<sub>A</sub>Receptors
Journal of Medicinal Chemistry 2002.0