New Pyridobenzodiazepine Derivatives:  Modifications of the Basic Side Chain Differentially Modulate Binding to Dopamine (D4.2, D2L) and Serotonin (5-HT2A) Receptors

Journal of Medicinal Chemistry
2002.0

Abstract

A series of new pyridobenzodiazepines with variation of the basic side chain were synthesized and evaluated for their binding to D(4.2), D(2L), and 5-HT(2A) receptors in comparison with clozapine, haloperidol, and two parent compounds previously described, 8-chloro-6-(4-methyl-1-piperazinyl)-11H-pyrido[2,3-b][1,4]benzodiazepine (8) and 8-methyl-6-(4-methyl-1-piperazinyl)-11H-pyrido[2,3-b][1,4]benzodiazepine (9). In the piperazine series, replacing the N-methyl group by a N-phenyl moiety (15-17, 30-32) provided a dramatic decrease of affinity for all receptors (K(i) > 1000 nM). A N-cyclohexyl group (20, 35) restored some affinity. Compounds with a N-benzyl (18, 33) or N-phenethyl side chain (19, 34) had significant affinities at D(4.2) and 5-HT(2A) receptors. Homologation of the piperazine nucleus (29, 44) led to a significant decrease of the affinity at all receptors investigated. In the 4-aminopiperidine series, N-methyl derivatives (21, 36) possessed less affinity in comparison with the N-methylpiperazine analogues (8, 9) while the N-benzyl congeners (22, 37) showed similar affinities. The rigidification of piperidine nucleus as obtained in azabicyclo[3.2.1]octane derivatives (23, 38) involved a slight reduction of the affinity at D(4.2) and 5-HT(2A) receptors while the affinity at D(2L) receptors was dramatically increased. The introduction of N-substituted aminoalkylamines to replace N-methylpiperazine generally led to a significant decrease in the affinity for D(4.2) receptors but some of these molecules (24, 25, 41) presented a significant 5-HT(2A) binding affinity. The presence of a more flexible side chain induced an increased conformational freedom. Consequently, the preferential position of the distal nitrogen or its basicity in piperazine derivatives was greatly modified. 19 with a high D(4.2) and 5-HT(2A) affinity (K(i) = 40 and 103 nM, respectively) did not induce cataleptic phenomenon in the paw test in rats but significantly reduced the immobility time in Porsolt's test in mice suggesting antidepressant properties.

Knowledge Graph

Similar Paper

New Pyridobenzodiazepine Derivatives:  Modifications of the Basic Side Chain Differentially Modulate Binding to Dopamine (D<sub>4.2</sub>, D<sub>2L</sub>) and Serotonin (5-HT<sub>2A</sub>) Receptors
Journal of Medicinal Chemistry 2002.0
New pyridobenzodiazepine derivatives as potential antipsychotics: synthesis and neurochemical study
Journal of Medicinal Chemistry 1993.0
New Pyridobenzoxazepine Derivatives Derived from 5-(4-Methylpiperazin-1-yl)-8-chloro-pyrido[2,3-b][1,5]benzoxazepine (JL13): Chemical Synthesis and Pharmacological Evaluation
Journal of Medicinal Chemistry 2012.0
Pyridobenzoxazepine and Pyridobenzothiazepine Derivatives as Potential Central Nervous System Agents: Synthesis and Neurochemical Study
Journal of Medicinal Chemistry 1994.0
Synthesis and Pharmacological Evaluation of 1-[(1,2-Diphenyl-1H-4-imidazolyl)methyl]-4-phenylpiperazines with Clozapine-Like Mixed Activities at Dopamine D<sub>2</sub>, Serotonin, and GABA<sub>A</sub>Receptors
Journal of Medicinal Chemistry 2002.0
Synthesis and receptor binding studies relevant to the neuroleptic activities of some 1-methyl-4-piperidylidene-9-substituted-pyrrolo[2,1-b][3]benzazepine derivatives
Journal of Medicinal Chemistry 1983.0
The synthesis and comparative receptor binding affinities of novel, isomeric pyridoindolobenzazepine scaffolds
Bioorganic &amp; Medicinal Chemistry Letters 2014.0
Synthesis, binding studies, and structure activity relationships of 1-aryl- and 2-aryl[1]benzopyranopyrazol-4-ones, central benzodiazepine receptor ligands
Journal of Medicinal Chemistry 1988.0
Synthesis and pharmacological evaluation of new N-phenylpiperazine derivatives designed as homologues of the antipsychotic lead compound LASSBio-579
European Journal of Medicinal Chemistry 2013.0
New (2-Methoxyphenyl)piperazine Derivatives as 5-HT1A Receptor Ligands with Reduced .alpha.1-Adrenergic Activity. Synthesis and Structure-Affinity Relationships
Journal of Medicinal Chemistry 1995.0