Benzothiopyranoindole-Based Antiproliferative Agents: Synthesis, Cytotoxicity, Nucleic Acids Interaction, and Topoisomerases Inhibition Properties

Journal of Medicinal Chemistry
2009.0

Abstract

Novel benzo[3',2':5,6]thiopyrano[3,2-b]indol-10(11H)-ones 1a-v were synthesized and evaluated for their antiproliferative activity in an in vitro assay of human tumor cell lines (HL-60 and HeLa). Compounds 1e-v, substituted at the 11-position with a basic side chain, showed a significant ability to inhibit cell growth with IC(50) values in the low micromolar range. Linear dichroism measurements showed that all 11-dialkylaminoalkyl substituted derivatives 1e-v behave as DNA-intercalating agents. Fluorimetric titrations demonstrated their specificity in binding to A-T rich regions, and molecular modeling studies were performed on the most active derivatives (1e, 1i, 1p) to characterize in detail the complexation mechanism of these benzothiopyranoindoles to DNA. A relaxation assay evidenced a dose-dependent inhibition of topoisomerase II activity that appeared in accordance with the antiproliferative capacity. Finally, for the most cytotoxic derivative, 1e, a topoisomerase II poisoning effect was also demonstrated, along with a weak inhibition of topoisomerase I-mediated relaxation.

Knowledge Graph

Similar Paper

Benzothiopyranoindole-Based Antiproliferative Agents: Synthesis, Cytotoxicity, Nucleic Acids Interaction, and Topoisomerases Inhibition Properties
Journal of Medicinal Chemistry 2009.0
Benzothiopyranoindole- and pyridothiopyranoindole-based antiproliferative agents targeting topoisomerases
European Journal of Medicinal Chemistry 2019.0
Synthesis, antitumor activity and DNA binding features of benzothiazolyl and benzimidazolyl substituted isoindolines
Bioorganic & Medicinal Chemistry 2018.0
Design and synthesis of novel 2,4-diaryl-5H-indeno[1,2-b]pyridine derivatives, and their evaluation of topoisomerase inhibitory activity and cytotoxicity
Bioorganic & Medicinal Chemistry 2015.0
Antitumor Agents. 5. Synthesis, Structure−Activity Relationships, and Biological Evaluation of Dimethyl-5H-pyridophenoxazin-5-ones, Tetrahydro-5H-benzopyridophenoxazin-5-ones, and 5H-Benzopyridophenoxazin-5-ones with Potent Antiproliferative Activity
Journal of Medicinal Chemistry 2006.0
Novel 2-aryl-4-(4′-hydroxyphenyl)-5H-indeno[1,2-b]pyridines as potent DNA non-intercalative topoisomerase catalytic inhibitors
European Journal of Medicinal Chemistry 2017.0
Synthesis and Mechanism Studies of 1,3-Benzoazolyl Substituted Pyrrolo[2,3-b]pyrazine Derivatives as Nonintercalative Topoisomerase II Catalytic Inhibitors
Journal of Medicinal Chemistry 2016.0
Synthesis of novel indole derivatives as promising DNA-binding agents and evaluation of antitumor and antitopoisomerase I activities
European Journal of Medicinal Chemistry 2017.0
Thiosemicarbazones and 4-thiazolidinones indole-based derivatives: Synthesis, evaluation of antiproliferative activity, cell death mechanisms and topoisomerase inhibition assay
European Journal of Medicinal Chemistry 2017.0
Synthesis, Antiproliferative Effect, and Topoisomerase II Inhibitory Activity of 3-Methyl-2-phenyl-1H-indoles
ACS Medicinal Chemistry Letters 2020.0