Biarylpyrazole Inverse Agonists at the Cannabinoid CB1 Receptor:  Importance of the C-3 Carboxamide Oxygen/Lysine3.28(192) Interaction

Journal of Medicinal Chemistry
2006.0

Abstract

The biarylpyrazole, N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (SR141716; 1) has been shown to act as an inverse agonist/antagonist at the cannabinoid CB1 receptor. Our previous mutant cycle study suggested that K3.28(192) is involved in a direct interaction with the C-3 substituent of 1 in wild-type (WT) CB1.(1) However, these results did not establish what part of the C-3 substituent of 1 is involved in the K3.28(192) hydrogen bond, the carboxamide oxygen or the piperidine nitrogen. Furthermore, our previous calcium channel assay results for 5-(4- chlorophenyl)-3-[(E)-2-cyclohexylethenyl]-1-(2,4-dichlorophenyl)-4- methyl-1H-pyrazole (VCHSR; 2) (an analogue of 1 that lacks hydrogen-bonding capability in its C-3 substituent) showed that this compound acts as a neutral antagonist, a result that is in contrast to 1, which acts as an inverse agonist in this same assay.(1) These results suggested a relationship between biarylpyrazole interaction with K3.28(192) at CB1 and inverse agonism, but these results were for a single pair of compounds (1 and 2). The work presented here was designed to test two hypotheses derived from our modeling and mutant cycle results. The hypotheses are as follows: (1) it is the carboxamide oxygen of the C-3 substituent of 1 that interacts directly with K3.28(192) and (2) the interaction with K3.28(192) is crucial for the production of inverse agonism for biarylpyrazoles such as 1. To determine whether the carboxamide oxygen or the piperidine nitrogen of the C-3 substituent may be the interaction site for K3.28(192), we designed, synthesized, and evaluated a new set of analogues of 1 (3-6, Chart 1) in which modifications only to the C-3 substituent of 1 have been made. In each case, the modifications that were made preserved the geometry of this substituent in 1. The absence of the piperidine nitrogen was not found to affect affinity, whereas the absence of the carboxamide oxygen resulted in a reduction in affinity. CB1 docking studies in an inactive state model of CB1 resulted in the trend, 3,1<5,4<2<6 for ligand/CB1 interaction energies. This trend was consistent with the trend in WT CB1 Ki values versus [3H]CP55,940 reported here. In calcium channel assays, all analogues with carboxamide oxygens (1, 3, and 4) were found to be inverse agonists, whereas those that lacked this group (2, 5, and 6) were found to be neutral antagonists. Taken together, these results support the hypothesis that it is the carboxamide oxygen of the C-3 substituent of 1 that engages in a hydrogen bond with K3.28(192) in WT CB1. Furthermore, functional results for 1-6 support the hypothesis that the interaction of 1 with K3.28(192) may be key to its inverse agonism.

Knowledge Graph

Similar Paper

Biarylpyrazole Inverse Agonists at the Cannabinoid CB1 Receptor:  Importance of the C-3 Carboxamide Oxygen/Lysine3.28(192) Interaction
Journal of Medicinal Chemistry 2006.0
Facile synthesis, ex-vivo and in vitro screening of 3-sulfonamide derivative of 5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxylic acid piperidin-1-ylamide (SR141716) a potent CB1 receptor antagonist
Bioorganic &amp; Medicinal Chemistry Letters 2008.0
Tricyclic pyrazoles. Part 8. Synthesis, biological evaluation and modelling of tricyclic pyrazole carboxamides as potential CB2 receptor ligands with antagonist/inverse agonist properties
European Journal of Medicinal Chemistry 2016.0
Synthesis, pharmacological evaluation and docking studies of pyrrole structure-based CB 2 receptor antagonists
European Journal of Medicinal Chemistry 2015.0
Two distinct classes of novel pyrazolinecarboxamides as potent cannabinoid CB1 receptor agonists
Bioorganic &amp; Medicinal Chemistry Letters 2010.0
Pyrazole antagonists of the CB1 receptor with reduced brain penetration
Bioorganic &amp; Medicinal Chemistry 2016.0
Bioisosteric replacement of dihydropyrazole of 4S-(−)-3-(4-chlorophenyl)-N-methyl-N′-[(4-chlorophenyl)-sulfonyl]-4-phenyl-4,5-dihydro-1H-pyrazole-1-caboxamidine (SLV-319) a potent CB1 receptor antagonist by imidazole and oxazole
Bioorganic &amp; Medicinal Chemistry Letters 2008.0
Tricyclic pyrazoles. Part 6. Benzofuro[3,2-c]pyrazole: A versatile architecture for CB2 selective ligands
European Journal of Medicinal Chemistry 2014.0
An Aromatic Microdomain at the Cannabinoid CB<sub>1</sub> Receptor Constitutes an Agonist/Inverse Agonist Binding Region
Journal of Medicinal Chemistry 2003.0
Synthesis and structure activity relationship investigation of triazolo[1,5-a]pyrimidines as CB2 cannabinoid receptor inverse agonists
European Journal of Medicinal Chemistry 2016.0