Molecular Modeling of the Human P2Y2 Receptor and Design of a Selective Agonist, 2‘-Amino-2‘-deoxy-2-thiouridine 5‘-Triphosphate

Journal of Medicinal Chemistry
2007.0

Abstract

A rhodopsin-based homology model of the nucleotide-activated human P2Y2 receptor, including loops, termini, and phospholipids, was optimized with the Monte Carlo multiple minimum conformational search routine. Docked uridine 5'-triphosphate (UTP) formed a nucleobase pi-pi complex with conserved Phe3.32. Selectivity-enhancing 2'-amino-2'-deoxy substitution interacted through pi-hydrogen-bonding with aromatic Phe6.51 and Tyr3.33. A "sequential ligand composition" approach for docking the flexible dinucleotide agonist Up4U demonstrated a shift of conserved cationic Arg3.29 from the UTP gamma position to the delta position of Up4U and Up4 ribose. Synthesized nucleotides were tested as agonists at human P2Y receptors expressed in 1321N1 astrocytoma cells. 2'-Amino and 2-thio modifications were synergized to enhance potency and selectivity; compound 8 (EC50 = 8 nM) was 300-fold P2Y2-selective versus P2Y4. 2'-Amine acetylation reduced potency, and trifluoroacetylation produced intermediate potency. 5-Amino nucleobase substitution did not enhance P2Y2 potency through a predicted hydrophilic interaction possibly because of destabilization of the receptor-favored Northern conformation of ribose. This detailed view of P2Y2 receptor recognition suggests mutations for model validation.

Knowledge Graph

Similar Paper

Molecular Modeling of the Human P2Y<sub>2</sub> Receptor and Design of a Selective Agonist, 2‘-Amino-2‘-deoxy-2-thiouridine 5‘-Triphosphate
Journal of Medicinal Chemistry 2007.0
Synthesis and Structure−Activity Relationships of Uracil Nucleotide Derivatives and Analogues as Agonists at Human P2Y<sub>2</sub>, P2Y<sub>4</sub>, and P2Y<sub>6</sub>Receptors
Journal of Medicinal Chemistry 2006.0
Structural Modifications of UMP, UDP, and UTP Leading to Subtype-Selective Agonists for P2Y<sub>2</sub>, P2Y<sub>4</sub>, and P2Y<sub>6</sub> Receptors
Journal of Medicinal Chemistry 2011.0
Synthesis and potency of novel uracil nucleotides and derivatives as P2Y2 and P2Y6 receptor agonists
Bioorganic &amp; Medicinal Chemistry 2008.0
Molecular Recognition of Agonists and Antagonists by the Nucleotide-Activated G Protein-Coupled P2Y<sub>2</sub>Receptor
Journal of Medicinal Chemistry 2017.0
Pyrimidine Nucleotides with 4-Alkyloxyimino and Terminal Tetraphosphate δ-Ester Modifications as Selective Agonists of the P2Y<sub>4</sub>Receptor
Journal of Medicinal Chemistry 2011.0
Molecular modeling of the human P2Y14 receptor: A template for structure-based design of selective agonist ligands
Bioorganic &amp; Medicinal Chemistry 2015.0
Pyrimidine Ribonucleotides with Enhanced Selectivity as P2Y<sub>6</sub> Receptor Agonists: Novel 4-Alkyloxyimino, (S)-Methanocarba, and 5′-Triphosphate γ-Ester Modifications
Journal of Medicinal Chemistry 2010.0
Structure−Activity Relationships of Uridine 5‘-Diphosphate Analogues at the Human P2Y<sub>6</sub>Receptor
Journal of Medicinal Chemistry 2006.0
Human P2Y<sub>6</sub> Receptor:  Molecular Modeling Leads to the Rational Design of a Novel Agonist Based on a Unique Conformational Preference
Journal of Medicinal Chemistry 2005.0