Structure−Activity Relationships of Uridine 5‘-Diphosphate Analogues at the Human P2Y6Receptor

Journal of Medicinal Chemistry
2006.0

Abstract

The structure-activity relationships and molecular modeling of the uracil nucleotide activated P2Y6 receptor have been studied. Uridine 5'-diphosphate (UDP) analogues bearing substitutions of the ribose moiety, the uracil ring, and the diphosphate group were synthesized and assayed for activity at the human P2Y6 receptor. The uracil ring was modified at the 4 position, with the synthesis of 4-substituted-thiouridine 5'-diphosphate analogues, as well as at positions 2, 3, and 5. The effect of modifications at the level of the phosphate chain was studied by preparing a cyclic 3',5'-diphosphate analogue, a 3'-diphosphate analogue, and several dinucleotide diphosphates. 5-Iodo-UDP 32 (EC50 = 0.15 microM) was equipotent to UDP, while substitutions of the 2'-hydroxyl (amino, azido) greatly reduce potency. The 2- and 4-thio analogues, 20 and 21, respectively, were also relatively potent in comparison to UDP. However, most other modifications greatly reduced potency. Molecular modeling indicates that the beta-phosphate of 5'-UDP and analogues is essential for the establishment of electrostatic interactions with two of the three conserved cationic residues of the receptor. Among 4-thioether derivatives, a 4-ethylthio analogue 23 displayed an EC50 of 0.28 microM, indicative of favorable interactions predicted for a small 4-alkylthio moiety with the aromatic ring of Y33 in TM1. The activity of analogue 19 in which the ribose was substituted with a 2-oxabicyclohexane ring in a rigid (S)-conformation (P = 126 degrees , 1'-exo) was consistent with molecular modeling. These results provide a better understanding of molecular recognition at the P2Y6 receptor and will be helpful in designing selective and potent P2Y6 receptor ligands.

Knowledge Graph

Similar Paper

Structure−Activity Relationships of Uridine 5‘-Diphosphate Analogues at the Human P2Y<sub>6</sub>Receptor
Journal of Medicinal Chemistry 2006.0
5-OMe-UDP is a Potent and Selective P2Y<sub>6</sub>-Receptor Agonist
Journal of Medicinal Chemistry 2010.0
Synthesis and potency of novel uracil nucleotides and derivatives as P2Y2 and P2Y6 receptor agonists
Bioorganic &amp; Medicinal Chemistry 2008.0
Synthesis and Structure−Activity Relationships of Uracil Nucleotide Derivatives and Analogues as Agonists at Human P2Y<sub>2</sub>, P2Y<sub>4</sub>, and P2Y<sub>6</sub>Receptors
Journal of Medicinal Chemistry 2006.0
Structure−Activity Relationship of Uridine 5‘<b>-</b>Diphosphoglucose Analogues as Agonists of the Human P2Y<sub>14</sub> Receptor
Journal of Medicinal Chemistry 2007.0
Structural Modifications of UMP, UDP, and UTP Leading to Subtype-Selective Agonists for P2Y<sub>2</sub>, P2Y<sub>4</sub>, and P2Y<sub>6</sub> Receptors
Journal of Medicinal Chemistry 2011.0
Pyrimidine Ribonucleotides with Enhanced Selectivity as P2Y<sub>6</sub> Receptor Agonists: Novel 4-Alkyloxyimino, (S)-Methanocarba, and 5′-Triphosphate γ-Ester Modifications
Journal of Medicinal Chemistry 2010.0
Human P2Y<sub>6</sub> Receptor:  Molecular Modeling Leads to the Rational Design of a Novel Agonist Based on a Unique Conformational Preference
Journal of Medicinal Chemistry 2005.0
Molecular recognition in the P2Y14 receptor: Probing the structurally permissive terminal sugar moiety of uridine-5′-diphosphoglucose
Bioorganic &amp; Medicinal Chemistry 2009.0
Molecular Modeling of the Human P2Y<sub>2</sub> Receptor and Design of a Selective Agonist, 2‘-Amino-2‘-deoxy-2-thiouridine 5‘-Triphosphate
Journal of Medicinal Chemistry 2007.0