Pyrimidine Nucleotides with 4-Alkyloxyimino and Terminal Tetraphosphate δ-Ester Modifications as Selective Agonists of the P2Y4Receptor

Journal of Medicinal Chemistry
2011.0

Abstract

P2Y(2) and P2Y(4) receptors are G protein-coupled receptors, activated by UTP and dinucleoside tetraphosphates, which are difficult to distinguish pharmacologically for lack of potent and selective ligands. We structurally varied phosphate and uracil moieties in analogues of pyrimidine nucleoside 5'-triphosphates and 5'-tetraphosphate esters. P2Y(4) receptor potency in phospholipase C stimulation in transfected 1321N1 human astrocytoma cells was enhanced in N(4)-alkyloxycytidine derivatives. OH groups on a terminal δ-glucose phosphoester of uridine 5'-tetraphosphate were inverted or substituted with H or F to probe H-bonding effects. N(4)-(Phenylpropoxy)-CTP 16 (MRS4062), Up(4)-[1]3'-deoxy-3'-fluoroglucose 34 (MRS2927), and N(4)-(phenylethoxy)-CTP 15 exhibit ≥10-fold selectivity for human P2Y(4) over P2Y(2) and P2Y(6) receptors (EC(50) values 23, 62, and 73 nM, respectively). δ-3-Chlorophenyl phosphoester 21 of Up(4) activated P2Y(2) but not P2Y(4) receptor. Selected nucleotides tested for chemical and enzymatic stability were much more stable than UTP. Agonist docking at CXCR4-based P2Y(2) and P2Y(4) receptor models indicated greater steric tolerance of N(4)-phenylpropoxy group at P2Y(4). Thus, distal structural changes modulate potency, selectivity, and stability of extended uridine tetraphosphate derivatives, and we report the first P2Y(4) receptor-selective agonists.

Knowledge Graph

Similar Paper

Pyrimidine Nucleotides with 4-Alkyloxyimino and Terminal Tetraphosphate δ-Ester Modifications as Selective Agonists of the P2Y<sub>4</sub>Receptor
Journal of Medicinal Chemistry 2011.0
Structural Modifications of UMP, UDP, and UTP Leading to Subtype-Selective Agonists for P2Y<sub>2</sub>, P2Y<sub>4</sub>, and P2Y<sub>6</sub> Receptors
Journal of Medicinal Chemistry 2011.0
Pyrimidine Ribonucleotides with Enhanced Selectivity as P2Y<sub>6</sub> Receptor Agonists: Novel 4-Alkyloxyimino, (S)-Methanocarba, and 5′-Triphosphate γ-Ester Modifications
Journal of Medicinal Chemistry 2010.0
Synthesis and Structure−Activity Relationships of Uracil Nucleotide Derivatives and Analogues as Agonists at Human P2Y<sub>2</sub>, P2Y<sub>4</sub>, and P2Y<sub>6</sub>Receptors
Journal of Medicinal Chemistry 2006.0
Synthesis and potency of novel uracil nucleotides and derivatives as P2Y2 and P2Y6 receptor agonists
Bioorganic &amp; Medicinal Chemistry 2008.0
Molecular Modeling of the Human P2Y<sub>2</sub> Receptor and Design of a Selective Agonist, 2‘-Amino-2‘-deoxy-2-thiouridine 5‘-Triphosphate
Journal of Medicinal Chemistry 2007.0
Synthesis and P2Y receptor activity of nucleoside 5′-phosphonate derivatives
Bioorganic &amp; Medicinal Chemistry Letters 2009.0
Human P2Y<sub>14</sub>Receptor Agonists: Truncation of the Hexose Moiety of Uridine-5′-Diphosphoglucose and Its Replacement with Alkyl and Aryl Groups
Journal of Medicinal Chemistry 2010.0
Identification of hydrolytically stable and selective P2Y1 receptor agonists
European Journal of Medicinal Chemistry 2009.0
Synthesis and P2Y2 receptor agonist activities of uridine 5′-phosphonate analogues
Bioorganic &amp; Medicinal Chemistry 2012.0