Synthesis and ABCG2 inhibitory evaluation of 5-N-acetylardeemin derivatives

Bioorganic & Medicinal Chemistry
2015.0

Abstract

An efficient and versatile synthesis of 5-N-acetylardeemin (1a) and sixteen 2-, 3- and 13-substituted derivatives 1b-q was achieved through Ugi three-component reaction of 3,3a,8,8a-tetrahydropyrrolo[2,3-b]indole and cyclization/epimerization. Their inhibitory activity on the drug efflux of breast cancer resistance protein (ABCG2) was evaluated by flow cytometric analysis of accumulation of Hoechst 33342 stain in Flp-In-293/ABCG2 cells. Most of the derivatives exhibited a stronger ABCG2 inhibitory effect compared with natural product 1a. The derivative 1m with a 4-tolyl substituent at the C-13 position exhibited the most potent ABCG2 inhibition. This preliminary structure-activity relationship study indicates that an electron-rich aryl moiety as the 13-substituent is key to increasing the inhibitory activity.

Knowledge Graph

Similar Paper

Synthesis and ABCG2 inhibitory evaluation of 5-N-acetylardeemin derivatives
Bioorganic & Medicinal Chemistry 2015.0
Acridone derivatives: Design, synthesis, and inhibition of breast cancer resistance protein ABCG2
Bioorganic & Medicinal Chemistry 2007.0
Synthesis and Investigation of Tetrahydro-β-carboline Derivatives as Inhibitors of the Breast Cancer Resistance Protein (ABCG2)
Journal of Medicinal Chemistry 2016.0
Structure–Activity Relationships of Chromone Derivatives toward the Mechanism of Interaction with and Inhibition of Breast Cancer Resistance Protein ABCG2
Journal of Medicinal Chemistry 2013.0
Synthesis and biological evaluation of quinazoline derivatives – A SAR study of novel inhibitors of ABCG2
European Journal of Medicinal Chemistry 2019.0
The 5-aromatic hydantoin-3-acetate derivatives as inhibitors of the tumour multidrug resistance efflux pump P-glycoprotein (ABCB1): Synthesis, crystallographic and biological studies
Bioorganic & Medicinal Chemistry 2016.0
Converting Potent Indeno[1,2-b]indole Inhibitors of Protein Kinase CK2 into Selective Inhibitors of the Breast Cancer Resistance Protein ABCG2
Journal of Medicinal Chemistry 2015.0
Synthesis and Biological Evaluation of 4-Anilino-quinazolines and -quinolines as Inhibitors of Breast Cancer Resistance Protein (ABCG2)
Journal of Medicinal Chemistry 2016.0
Synthesis and biological investigation of 2,4-substituted quinazolines as highly potent inhibitors of breast cancer resistance protein (ABCG2)
European Journal of Medicinal Chemistry 2017.0
Phenyltetrazolyl-phenylamides: Substituent impact on modulation capability and selectivity toward the efflux protein ABCG2 and investigation of interaction with the transporter
European Journal of Medicinal Chemistry 2016.0