Molecular modeling studies, synthesis and biological evaluation of derivatives of N-phenylbenzamide as Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) inhibitors

Medicinal Chemistry Research
2011.0

Abstract

The search for new antimalarial agents is necessary as current drugs in the market have become vulnerable due to the emergence of resistant strains of Plasmodium falciparum (Pf). The enzyme dihydroorotate dehydrogenase (PfDHODH) is a validated target for development of antimalarial agents. PfDHODH is a crucial enzyme in the de novo pyrimidine biosynthesis pathway and is essential for the growth of the parasite. In this article, we report the design, synthesis and evaluation of benzanilides as inhibitors of PfDHODH. From the pool of molecules designed using molecular modeling techniques, candidates were shortlisted for further evaluation based on docking scores and 3D-QSAR studies. The activities of these shortlisted analogs were predicted from CoMFA and CoMSIA models. The most promising molecules were synthesized using solvent-free microwave-assisted synthesis and their structures characterized by spectroscopic techniques. The molecules were screened for in vitro antimalarial activity by the whole cell assay method. Two molecules viz. KMC-3 and KMC-15 were found to be active at 8.7 and 5.7 lM concentrations, respectively.

Knowledge Graph

Similar Paper

Molecular modeling studies, synthesis and biological evaluation of derivatives of N-phenylbenzamide as Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) inhibitors
Medicinal Chemistry Research 2011.0
Evaluation of 7-arylaminopyrazolo[1,5-a]pyrimidines as anti-Plasmodium falciparum, antimalarial, and Pf-dihydroorotate dehydrogenase inhibitors
European Journal of Medicinal Chemistry 2017.0
Design and Synthesis of Potent Inhibitors of the Malaria Parasite Dihydroorotate Dehydrogenase
Journal of Medicinal Chemistry 2007.0
Novel Selective and Potent Inhibitors of Malaria Parasite Dihydroorotate Dehydrogenase: Discovery and Optimization of Dihydrothiophenone Derivatives
Journal of Medicinal Chemistry 2013.0
Structure-Guided Lead Optimization of Triazolopyrimidine-Ring Substituents Identifies PotentPlasmodium falciparumDihydroorotate Dehydrogenase Inhibitors with Clinical Candidate Potential
Journal of Medicinal Chemistry 2011.0
Lead Optimization of Aryl and Aralkyl Amine-Based Triazolopyrimidine Inhibitors ofPlasmodium falciparumDihydroorotate Dehydrogenase with Antimalarial Activity in Mice
Journal of Medicinal Chemistry 2011.0
Docking and Database Screening Reveal New Classes ofPlasmodiumfalciparumDihydrofolate Reductase Inhibitors
Journal of Medicinal Chemistry 2003.0
Benzothiazole analogues: Synthesis, characterization, MO calculations with PM6 and DFT, in silico studies and in vitro antimalarial as DHFR inhibitors and antimicrobial activities
Bioorganic & Medicinal Chemistry 2017.0
Target Guided Synthesis of 5-Benzyl-2,4-diamonopyrimidines: Their Antimalarial Activities and Binding Affinities to Wild Type and Mutant Dihydrofolate Reductases from Plasmodium falciparum
Journal of Medicinal Chemistry 2004.0
Discovery and development of 2-aminobenzimidazoles as potent antimalarials
European Journal of Medicinal Chemistry 2021.0