Discovery and SAR of 4-aminopyrrolidine-2-carboxylic acid correctors of CFTR for the treatment of cystic fibrosis

Bioorganic & Medicinal Chemistry Letters
2022.0

Abstract

Cystic fibrosis (CF) is an autosomal recessive disease resulting from mutations on both copies of the CFTR gene. Phenylalanine deletion at position 508 of the CFTR protein (F508del-CFTR) is the most frequent mutation in CF patients. Currently, the most effective treatments of CF use a dual or triple combination of CFTR correctors and potentiators. In triple therapy, two correctors (C1 and C2) and a potentiator are employed. Herein, we describe the identification and exploration of the SAR of a series of 4-aminopyrrolidine-2-carboxylic acid C2 correctors of CFTR to be used in conjunction with our existing C1 corrector series for the treatment of CF.

Knowledge Graph

Similar Paper

Discovery and SAR of 4-aminopyrrolidine-2-carboxylic acid correctors of CFTR for the treatment of cystic fibrosis
Bioorganic & Medicinal Chemistry Letters 2022.0
Synthesis and structure–activity relationship of aminoarylthiazole derivatives as correctors of the chloride transport defect in cystic fibrosis
European Journal of Medicinal Chemistry 2015.0
ΔF508-CFTR correctors: Synthesis and evaluation of thiazole-tethered imidazolones, oxazoles, oxadiazoles, and thiadiazoles
Bioorganic & Medicinal Chemistry Letters 2014.0
Synthesis and biological evaluation of novel thiazole- VX-809 hybrid derivatives as F508del correctors by QSAR-based filtering tools
European Journal of Medicinal Chemistry 2018.0
Pyrazolylthiazole as ΔF508-Cystic Fibrosis Transmembrane Conductance Regulator Correctors with Improved Hydrophilicity Compared to Bithiazoles
Journal of Medicinal Chemistry 2010.0
Cystic Fibrosis: A New Target for 4-Imidazo[2,1-b]thiazole-1,4-dihydropyridines
Journal of Medicinal Chemistry 2011.0
Potent s-cis-Locked Bithiazole Correctors of ΔF508 Cystic Fibrosis Transmembrane Conductance Regulator Cellular Processing for Cystic Fibrosis Therapy
Journal of Medicinal Chemistry 2008.0
Potential Agents for Treating Cystic Fibrosis: Cyclic Tetrapeptides That Restore Trafficking and Activity of ΔF508-CFTR
ACS Medicinal Chemistry Letters 2011.0
Discovery of Icenticaftor (QBW251), a Cystic Fibrosis Transmembrane Conductance Regulator Potentiator with Clinical Efficacy in Cystic Fibrosis and Chronic Obstructive Pulmonary Disease
Journal of Medicinal Chemistry 2021.0
Fatty Acid Cysteamine Conjugates as Novel and Potent Autophagy Activators That Enhance the Correction of Misfolded F508del-Cystic Fibrosis Transmembrane Conductance Regulator (CFTR)
Journal of Medicinal Chemistry 2017.0