Pharmacokinetics of Aztreonam in Healthy Subjects and Patients with Cystic Fibrosis and Evaluation of Dose-Exposure Relationships Using Monte Carlo Simulation

Antimicrobial Agents and Chemotherapy
2007.0

Abstract

Aztreonam (AZM) is a monobactam antibiotic with a high level of activity against gram-negative micro-organisms, including Pseudomonas aeruginosa. We evaluated AZM pharmacokinetics and pharmacokinetic-pharmacodynamic relationships in patients with cystic fibrosis (CF) and healthy subjects. Pharmacokinetic data in eight CF patients and healthy subjects that were matched for age, gender, weight, and height were obtained and analyzed by using the nonparametric adaptive grid algorithm. Probabilities of target attainment using percentages of time of unbound concentration above the MIC (fT>MIC) were obtained by using a Monte Carlo simulation. AZM total body clearance was significantly higher in CF patients (100.1 +/- 17.1 versus 76.2 +/- 7.4 ml/min in healthy subjects; P < 0.01). The pharmacokinetic parameter estimates for terminal half-life (1.54 +/- 0.17 h [mean +/- the standard deviation]) and volume of distribution (0.20 +/- 0.02 liters/kg in patients with CF patients were not different from those in healthy subjects. Monte Carlo simulations with a target of a fT>MIC of 50 to 60% at a dose of 1,000 mg every 8 h indicated a clinical breakpoint of 4 mg/liter and 1 to 2 mg/liter for healthy subjects and CF patients, respectively. This study using matched controls showed that AZM total body clearance and not the volume of distribution is higher in CF patients as a result of increased renal clearance. Pharmacokinetic parameter estimates in healthy subjects resulted in a clinical susceptibility breakpoint of < or =4 mg/liter for a dose of 1,000 mg every 8 h. Patients suspected of having high clearance rates, such as CF patients, should be monitored closely, with dosing regimens adjusted accordingly.

Knowledge Graph

Similar Paper

Pharmacokinetics of Aztreonam in Healthy Subjects and Patients with Cystic Fibrosis and Evaluation of Dose-Exposure Relationships Using Monte Carlo Simulation
Antimicrobial Agents and Chemotherapy 2007.0
Systematic Comparison of the Population Pharmacokinetics and Pharmacodynamics of Piperacillin in Cystic Fibrosis Patients and Healthy Volunteers
Antimicrobial Agents and Chemotherapy 2007.0
In Vitro Pharmacodynamics of Levofloxacin and Other Aerosolized Antibiotics under Multiple Conditions Relevant to Chronic Pulmonary Infection in Cystic Fibrosis
Antimicrobial Agents and Chemotherapy 2010.0
Population Modeling and Monte Carlo Simulation Study of the Pharmacokinetics and Antituberculosis Pharmacodynamics of Rifampin in Lungs
Antimicrobial Agents and Chemotherapy 2009.0
Population Pharmacokinetics of Micafungin in Neonates and Young Infants
Antimicrobial Agents and Chemotherapy 2010.0
Moxifloxacin Pharmacokinetics/Pharmacodynamics and Optimal Dose and Susceptibility Breakpoint Identification for Treatment of DisseminatedMycobacterium aviumInfection
Antimicrobial Agents and Chemotherapy 2010.0
Pharmacokinetics of Penicillin G in Infants with a Gestational Age of Less than 32 Weeks
Antimicrobial Agents and Chemotherapy 2007.0
Azithromycin Blocks Quorum Sensing and Alginate Polymer Formation and Increases the Sensitivity to Serum and Stationary-Growth-Phase Killing ofPseudomonas aeruginosaand Attenuates ChronicP. aeruginosaLung Infection inCftr<sup>−</sup><sup>/</sup><sup>−</sup>Mice
Antimicrobial Agents and Chemotherapy 2007.0
Bacterial Strain-to-Strain Variation in Pharmacodynamic Index Magnitude, a Hitherto Unconsidered Factor in Establishing Antibiotic Clinical Breakpoints
Antimicrobial Agents and Chemotherapy 2009.0
Clinical Pharmacodynamics of Cefepime in Patients Infected with Pseudomonas aeruginosa
Antimicrobial Agents and Chemotherapy 2010.0