Efflux-Related Resistance to Norfloxacin, Dyes, and Biocides in Bloodstream Isolates ofStaphylococcus aureus

Antimicrobial Agents and Chemotherapy
2007.0

Abstract

Efflux is an important resistance mechanism in Staphylococcus aureus, but its frequency in patients with bacteremia is unknown. Nonreplicate bloodstream isolates were collected over an 8-month period, and MICs of four common efflux pump substrates, with and without the broad-spectrum efflux pump inhibitor reserpine, were determined (n = 232). A reserpine-associated fourfold decrease in MIC was considered indicative of efflux. Strains exhibiting efflux of at least two of the four substrates were identified ("effluxing strains" [n = 114]). For these strains, MICs with or without reserpine for an array of typical substrates and the expression of mepA, mdeA, norA, norB, norC, and qacA/B were determined using quantitative real-time reverse transcription-PCR (qRT-PCR). A fourfold or greater increase in gene expression was considered significant. The most commonly effluxed substrates were ethidium bromide and chlorhexidine (100 and 96% of effluxing strains, respectively). qRT-PCR identified strains overexpressing mepA (5 [4.4%]), mdeA (13 [11.4%]), norA (26 [22.8%]), norB (29 [25.4%]), and norC (19 [16.7%]); 23 strains overexpressed two or more genes. Mutations probably associated with increased gene expression included a MepR-inactivating substitution and norA promoter region insertions or deletions. Mutations possibly associated with increased expression of the other analyzed genes were also observed. Effluxing strains comprised 49% of all strains studied (114/232 strains), with nearly half of these overexpressing genes encoding MepA, MdeA, and/or NorABC (54/114 strains). Reduced susceptibility to biocides may contribute to persistence on environmental surfaces, and efflux of drugs such as fluoroquinolones may predispose strains to high-level target-based resistance.

Knowledge Graph

Similar Paper

Efflux-Related Resistance to Norfloxacin, Dyes, and Biocides in Bloodstream Isolates ofStaphylococcus aureus
Antimicrobial Agents and Chemotherapy 2007.0
Re-evolution of the 2-Phenylquinolines: Ligand-Based Design, Synthesis, and Biological Evaluation of a Potent New Class of Staphylococcus aureus NorA Efflux Pump Inhibitors to Combat Antimicrobial Resistance
Journal of Medicinal Chemistry 2013.0
Boronic species as promising inhibitors of the Staphylococcus aureus NorA efflux pump: Study of 6-substituted pyridine-3-boronic acid derivatives
European Journal of Medicinal Chemistry 2015.0
Efflux-mediated bis-indole resistance in Staphylococcus aureus reveals differential substrate specificities for MepA and MepR
Bioorganic & Medicinal Chemistry 2010.0
First Identification of Boronic Species as Novel Potential Inhibitors of the Staphylococcus aureus NorA Efflux Pump
Journal of Medicinal Chemistry 2014.0
Evolution from a Natural Flavones Nucleus to Obtain 2-(4-Propoxyphenyl)quinoline Derivatives As Potent Inhibitors of the S. aureus NorA Efflux Pump
Journal of Medicinal Chemistry 2011.0
Evaluation of Elaiophylin extracted from Streptomyces hygroscopicus as a potential inhibitor of the NorA efflux protein in Staphylococcus aureus: An in vitro and in silico approach
Bioorganic & Medicinal Chemistry Letters 2021.0
Potentiating the intracellular killing of Staphylococcus aureus by dihydroquinazoline analogues as NorA efflux pump inhibitor
Bioorganic & Medicinal Chemistry 2022.0
From Phenothiazine to 3-Phenyl-1,4-benzothiazine Derivatives as Inhibitors of theStaphylococcus aureusNorA Multidrug Efflux Pump
Journal of Medicinal Chemistry 2008.0
Fluoroquinolone Efflux by the Plasmid-Mediated Multidrug Efflux Pump QacB Variant QacBIII in Staphylococcus aureus
Antimicrobial Agents and Chemotherapy 2010.0