Synthesis and P2Y receptor activity of nucleoside 5′-phosphonate derivatives

Bioorganic & Medicinal Chemistry Letters
2009.0

Abstract

Ribose-based nucleoside 5'-diphosphates and triphosphates and related nucleotides were compared in their potency at the P2Y receptors with the corresponding nucleoside 5'-phosphonate derivatives. Phosphonate derivatives of UTP and ATP activated the P2Y(2) receptor but were inactive or weakly active at P2Y(4) receptor. Uridine 5'-(diphospho)phosphonate was approximately as potent at the P2Y(2) receptor as at the UDP-activated P2Y(6) receptor. These results suggest that removal of the 5'-oxygen atom from nucleotide agonist derivatives reduces but does not prevent interaction with the P2Y(2) receptor. Uridine 5'-(phospho)phosphonate as well as the 5'-methylenephosphonate equivalent of UMP were inactive at the P2Y(4) receptor and exhibited maximal effects at the P2Y(2) receptor that were 50% of that of UTP suggesting novel action of these analogues.

Knowledge Graph

Similar Paper

Synthesis and P2Y receptor activity of nucleoside 5′-phosphonate derivatives
Bioorganic & Medicinal Chemistry Letters 2009.0
Synthesis and P2Y2 receptor agonist activities of uridine 5′-phosphonate analogues
Bioorganic & Medicinal Chemistry 2012.0
Synthesis and Structure−Activity Relationships of Uracil Nucleotide Derivatives and Analogues as Agonists at Human P2Y<sub>2</sub>, P2Y<sub>4</sub>, and P2Y<sub>6</sub>Receptors
Journal of Medicinal Chemistry 2006.0
Synthesis of uracil nucleotide analogs with a modified, acyclic ribose moiety as P2Y2 receptor antagonists
Bioorganic &amp; Medicinal Chemistry 2009.0
Synthesis and potency of novel uracil nucleotides and derivatives as P2Y2 and P2Y6 receptor agonists
Bioorganic &amp; Medicinal Chemistry 2008.0
Synthesis and P2Y receptor activity of a series of uridine dinucleoside 5′-polyphosphates
Bioorganic &amp; Medicinal Chemistry Letters 2001.0
Structural Modifications of UMP, UDP, and UTP Leading to Subtype-Selective Agonists for P2Y<sub>2</sub>, P2Y<sub>4</sub>, and P2Y<sub>6</sub> Receptors
Journal of Medicinal Chemistry 2011.0
Pyrimidine Nucleotides with 4-Alkyloxyimino and Terminal Tetraphosphate δ-Ester Modifications as Selective Agonists of the P2Y<sub>4</sub>Receptor
Journal of Medicinal Chemistry 2011.0
Structure−Activity Relationships of Bisphosphate Nucleotide Derivatives as P2Y<sub>1</sub> Receptor Antagonists and Partial Agonists
Journal of Medicinal Chemistry 1999.0
Novel nucleotide triphosphates as potent P2Y2 agonists
Bioorganic &amp; Medicinal Chemistry Letters 2007.0