Synthesis of uracil nucleotide analogs with a modified, acyclic ribose moiety as P2Y2 receptor antagonists

Bioorganic & Medicinal Chemistry
2009.0

Abstract

A series of new uracil nucleotide analogs (monophosphates, triphosphates, and phosphonates) was synthesized, in which the ribose moiety was replaced by acyclic chains, including branched or linear alkyl or dialkylether linkers. 1-omega-Bromoalkyluracil derivatives (2) were converted to the corresponding alcohols by treatment with sodium hydroxide and subsequently phosphorylated using phosphorus oxychloride followed by hydrolysis to yield the monophosphates, or by coupling with diphosphate to form the triphosphates. Reaction of 2 with triethyl phosphite followed by deprotection with trimethylsilyl bromide led to the omega-phosphonylalkyluracil derivatives. These products could be further phosphorylated by converting them into their imidazolides and subsequent treatment with diphosphate yielding the corresponding UTP analogs. Nucleoside analogs with an oxygen atom in the 2'-position, which are more similar to the natural ribosides, were synthesized from silylated uracil and trimethylsilyl iodide-treated 1,3-dioxolane, or 1,3-dioxane, respectively, and subsequently phosphorylated by standard procedures. The nucleotide analogs were investigated in a functional assay at NG108-15 cells, a neuroblastomaxglioma hybrid cell line which expresses the UTP- and ATP-activated nucleotide receptor subtype P2Y(2). The acyclic nucleotide analogs were generally weaker ligands than UTP, and-in contrast to UTP-they were antagonistic. The most potent compound was diphosphoric 5-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)pentylphosphonic anhydride (5c) with an IC(50) value of 92microM showing that the replacement of the alpha-phosphate by phosphonate, which leads to enhanced stability, was well tolerated.

Knowledge Graph

Similar Paper

Synthesis of uracil nucleotide analogs with a modified, acyclic ribose moiety as P2Y2 receptor antagonists
Bioorganic & Medicinal Chemistry 2009.0
Synthesis and Structure−Activity Relationships of Uracil Nucleotide Derivatives and Analogues as Agonists at Human P2Y<sub>2</sub>, P2Y<sub>4</sub>, and P2Y<sub>6</sub>Receptors
Journal of Medicinal Chemistry 2006.0
Synthesis and potency of novel uracil nucleotides and derivatives as P2Y2 and P2Y6 receptor agonists
Bioorganic &amp; Medicinal Chemistry 2008.0
Synthesis and P2Y2 receptor agonist activities of uridine 5′-phosphonate analogues
Bioorganic &amp; Medicinal Chemistry 2012.0
Synthesis and P2Y receptor activity of nucleoside 5′-phosphonate derivatives
Bioorganic &amp; Medicinal Chemistry Letters 2009.0
Structure−Activity Relationships of Uridine 5‘-Diphosphate Analogues at the Human P2Y<sub>6</sub>Receptor
Journal of Medicinal Chemistry 2006.0
Structural Modifications of UMP, UDP, and UTP Leading to Subtype-Selective Agonists for P2Y<sub>2</sub>, P2Y<sub>4</sub>, and P2Y<sub>6</sub> Receptors
Journal of Medicinal Chemistry 2011.0
Methanocarba Modification of Uracil and Adenine Nucleotides:  High Potency of Northern Ring Conformation at P2Y<sub>1</sub>, P2Y<sub>2</sub>, P2Y<sub>4</sub>, and P2Y<sub>11</sub> but Not P2Y<sub>6</sub> Receptors
Journal of Medicinal Chemistry 2002.0
Novel nucleotide triphosphates as potent P2Y2 agonists with enhanced stability over UTP
Bioorganic &amp; Medicinal Chemistry Letters 2007.0
Molecular Modeling of the Human P2Y<sub>2</sub> Receptor and Design of a Selective Agonist, 2‘-Amino-2‘-deoxy-2-thiouridine 5‘-Triphosphate
Journal of Medicinal Chemistry 2007.0