Influence of TEM-1 β-Lactamase on the Pharmacodynamic Activity of Simulated Total versus Free-Drug Serum Concentrations of Cefditoren (400 Milligrams) versus Amoxicillin-Clavulanic Acid (2,000/125 Milligrams) against Haemophilus influenzae Strains Exhibiting an N526K Mutation in the ftsI Gene

Antimicrobial Agents and Chemotherapy
2007.0

Abstract

The aim of this study was to explore bactericidal activity of total and free serum simulated concentrations after the oral administration of cefditoren (400 mg, twice daily [bid]) versus the oral administration of amoxicillin-clavulanic acid extended release formulation (2,000/125 mg bid) against Haemophilus influenzae. A computerized pharmacodynamic simulation was performed, and colony counts and beta-lactamase activity were determined over 48 h. Three strains were used: ampicillin-susceptible, beta-lactamase-negative ampicillin-resistant (BLNAR) (also resistant to amoxicillin-clavulanic acid) and beta-lactamase-positive amoxicillin-clavulanic acid-resistant (BLPACR) strains, with cefditoren MICs of < or =0.12 microg/ml and amoxicillin-clavulanic acid MICs of 2, 8, and 8 microg/ml, respectively. Against the ampicillin-susceptible and BLNAR strains, bactericidal activity (> or =3 log(10) reduction) was obtained from 6 h on with either total and free cefditoren or amoxicillin-clavulanic acid. Against the BLPACR strain, free cefditoren showed bactericidal activity from 8 h on. In amoxicillin-clavulanic acid simulations the increase in colony counts from 4 h on occurred in parallel with the increase in beta-lactamase activity for the BLPACR strain. Since both BLNAR and BLPACR strains exhibited the same MIC, this was due to the significantly lower (P < or = 0.012) amoxicillin concentrations from 4 h on in simulations with beta-lactamase positive versus negative strains, thus decreasing the time above MIC (T>MIC). From a pharmacodynamic point of view, the theoretical amoxicillin T>MIC against strains with elevated ampicillin/amoxicillin-clavulanic acid MICs should be considered with caution since the presence of beta-lactamase inactivates the antibiotic, thus rendering inaccurate theoretical calculations. The experimental bactericidal activity of cefditoren is maintained over the dosing interval regardless of the presence of a mutation in the ftsI gene or beta-lactamase production.

Knowledge Graph

Similar Paper

Influence of TEM-1 β-Lactamase on the Pharmacodynamic Activity of Simulated Total versus Free-Drug Serum Concentrations of Cefditoren (400 Milligrams) versus Amoxicillin-Clavulanic Acid (2,000/125 Milligrams) against Haemophilus influenzae Strains Exhibiting an N526K Mutation in the ftsI Gene
Antimicrobial Agents and Chemotherapy 2007.0
Urine Bactericidal Activity against Escherichia coli Isolates Exhibiting Different Resistance Phenotypes/Genotypes in an In Vitro Pharmacodynamic Model Simulating Urine Concentrations Obtained after Oral Administration of a 400-Milligram Single Dose of Cefditoren-Pivoxil
Antimicrobial Agents and Chemotherapy 2008.0
Comparison of the Efficacies of Oral β-Lactams in Selection of Haemophilus influenzae Transformants with Mutated ftsI Genes
Antimicrobial Agents and Chemotherapy 2008.0
Can the Etest Correctly Determine the MICs of β-Lactam and Cephalosporin Antibiotics for Beta-Lactamase-Negative Ampicillin-Resistant Haemophilus influenzae ?
Antimicrobial Agents and Chemotherapy 2007.0
Ampicillin-Resistant Non-β-Lactamase-Producing Haemophilus influenzae in Spain: Recent Emergence of Clonal Isolates with Increased Resistance to Cefotaxime and Cefixime
Antimicrobial Agents and Chemotherapy 2007.0
Diversity of Ampicillin Resistance Genes and Antimicrobial Susceptibility Patterns in Haemophilus influenzae Strains Isolated in Korea
Antimicrobial Agents and Chemotherapy 2007.0
Antimicrobial Activities of Piperacillin-Tazobactam against Haemophilus influenzae Isolates, Including β-Lactamase-Negative Ampicillin-Resistant and β-Lactamase-Positive Amoxicillin- Clavulanate-Resistant Isolates, and Mutations in Their Quinolone Resistance-Determining Regions
Antimicrobial Agents and Chemotherapy 2009.0
In Vitro Activity of Tebipenem, a New Oral Carbapenem Antibiotic, against β-Lactamase-Nonproducing, Ampicillin-Resistant Haemophilus influenzae
Antimicrobial Agents and Chemotherapy 2010.0
Comparison of the Activity of a Human Simulated, High-Dose, Prolonged Infusion of Meropenem against Klebsiella pneumoniae Producing the KPC Carbapenemase versus That against Pseudomonas aeruginosa in an In Vitro Pharmacodynamic Model
Antimicrobial Agents and Chemotherapy 2010.0
Genetic Characteristics and Clonal Dissemination of β-Lactamase-Negative Ampicillin-ResistantHaemophilus influenzaeStrains Isolated from the Upper Respiratory Tract of Patients in Japan
Antimicrobial Agents and Chemotherapy 2007.0