Mutated Response Regulator graR Is Responsible for Phenotypic Conversion of Staphylococcus aureus from Heterogeneous Vancomycin-Intermediate Resistance to Vancomycin-Intermediate Resistance

Antimicrobial Agents and Chemotherapy
2008.0

Abstract

Multistep genetic alteration is required for methicillin-resistant Staphylococcus aureus (MRSA) to achieve the level of vancomycin resistance of vancomycin-intermediate S. aureus (VISA). In the progression of vancomycin resistance, strains with heterogeneous vancomycin resistance, designated hetero-VISA, are observed. In studying the whole-genome sequencing of the representative hetero-VISA strain Mu3 and comparing it with that of closely related MRSA strains Mu50 (VISA) and N315 (vancomycin-susceptible S. aureus [VSSA]), we identified a mutation in the response regulator of the graSR two-component regulatory system. Introduction of mutated graR, designated graR*, but not intact graR, designated graRn, could convert the hetero-VISA phenotype of Mu3 into a VISA phenotype which was comparable to that of Mu50. The same procedure did not appreciably increase the vancomycin resistance of VSSA strain N315, indicating that graR* expression was effective only in the physiological milieu of hetero-VISA cell to achieve a VISA phenotype. Interestingly, the overexpression of graR* increased the daptomycin MICs in both Mu3 and N315 and decreased the oxacillin MIC in N315.

Knowledge Graph

Similar Paper

Mutated Response Regulator graR Is Responsible for Phenotypic Conversion of Staphylococcus aureus from Heterogeneous Vancomycin-Intermediate Resistance to Vancomycin-Intermediate Resistance
Antimicrobial Agents and Chemotherapy 2008.0
Genomic Analysis Reveals a Point Mutation in the Two-Component Sensor Gene graS That Leads to Intermediate Vancomycin Resistance in Clinical Staphylococcus aureus
Antimicrobial Agents and Chemotherapy 2008.0
Contribution of vraSR and graSR Point Mutations to Vancomycin Resistance in Vancomycin-Intermediate Staphylococcus aureus
Antimicrobial Agents and Chemotherapy 2009.0
Selection of Heterogeneous Vancomycin-Intermediate Staphylococcus aureus by Imipenem
Antimicrobial Agents and Chemotherapy 2009.0
Interaction of the GraRS Two-Component System with the VraFG ABC Transporter To Support Vancomycin-Intermediate Resistance in Staphylococcus aureus
Antimicrobial Agents and Chemotherapy 2007.0
An RpoB Mutation Confers Dual Heteroresistance to Daptomycin and Vancomycin in Staphylococcus aureus
Antimicrobial Agents and Chemotherapy 2010.0
Serial Daptomycin Selection Generates Daptomycin-NonsusceptibleStaphylococcus aureusStrains with a Heterogeneous Vancomycin-Intermediate Phenotype
Antimicrobial Agents and Chemotherapy 2008.0
Daptomycin Nonsusceptibility in Staphylococcus aureus with Reduced Vancomycin Susceptibility Is Independent of Alterations in MprF
Antimicrobial Agents and Chemotherapy 2007.0
VanB-Type Enterococcus faecium Clinical Isolate Successively Inducibly Resistant to, Dependent on, and Constitutively Resistant to Vancomycin
Antimicrobial Agents and Chemotherapy 2009.0
Fitness Cost of VanA-Type Vancomycin Resistance in Methicillin-Resistant Staphylococcus aureus
Antimicrobial Agents and Chemotherapy 2009.0