Fitness Cost of VanA-Type Vancomycin Resistance in Methicillin-Resistant Staphylococcus aureus

Antimicrobial Agents and Chemotherapy
2009.0

Abstract

We have quantified the biological cost of VanA-type glycopeptide resistance due to the acquisition of the resistance operon by methicillin-resistant Staphylococcus aureus (MRSA) from Enterococcus sp. Exponential growths of recipient strain HIP11713, its transconjugant VRSA-1, VRSA-5, and VRSA-6 were compared in the absence or, except for HIP11713, in the presence of vancomycin. Induction of resistance was performed by adding vancomycin in both the preculture and the culture or the culture at only 1/50 the MIC. In the absence of vancomycin, the growth rates of the vancomycin-resistant S. aureus (VRSA) strains were similar to that of susceptible MRSA strain HIP11713. When resistance was induced, and under both conditions, there was a significant reduction of the growth rate of the VRSA strains relative to that of HIP11713 and to those of their noninduced counterparts, corresponding to a ca. 20% to 38% reduction in fitness. Competition experiments between isogenic VRSA-1 and HIP11713 mixed at a 1:1, 1:100, or 100:1 ratio revealed a competitive disadvantage of 0.4% to 3% per 10 generations of the transconjugant versus the recipient. This slight fitness burden can be attributed to the basal level of expression of the van genes in the absence of induction combined with a gene dosage effect due to the presence of the van operon on multicopy plasmids. These data indicate that VanA-type resistance, when induced, is highly costly for the MRSA host, whereas in the absence of induction, its biological cost is minimal. Thus, the potential for the dissemination of VRSA clinical isolates should not be underestimated.

Knowledge Graph

Similar Paper

Fitness Cost of VanA-Type Vancomycin Resistance in Methicillin-Resistant Staphylococcus aureus
Antimicrobial Agents and Chemotherapy 2009.0
VanA-Type Vancomycin-ResistantStaphylococcus aureus
Antimicrobial Agents and Chemotherapy 2009.0
Spontaneous Deletion of the Methicillin Resistance Determinant, mecA , Partially Compensates for the Fitness Cost Associated with High-Level Vancomycin Resistance in Staphylococcus aureus
Antimicrobial Agents and Chemotherapy 2008.0
High-Level Vancomycin-ResistantStaphylococcus aureusIsolates Associated with a Polymicrobial Biofilm
Antimicrobial Agents and Chemotherapy 2007.0
Genomic Analysis Reveals a Point Mutation in the Two-Component Sensor Gene graS That Leads to Intermediate Vancomycin Resistance in Clinical Staphylococcus aureus
Antimicrobial Agents and Chemotherapy 2008.0
VanB-Type Enterococcus faecium Clinical Isolate Successively Inducibly Resistant to, Dependent on, and Constitutively Resistant to Vancomycin
Antimicrobial Agents and Chemotherapy 2009.0
Fitness Costs of Fluoroquinolone Resistance in Streptococcus pneumoniae
Antimicrobial Agents and Chemotherapy 2007.0
Contribution of vraSR and graSR Point Mutations to Vancomycin Resistance in Vancomycin-Intermediate Staphylococcus aureus
Antimicrobial Agents and Chemotherapy 2009.0
Mutated Response Regulator graR Is Responsible for Phenotypic Conversion of Staphylococcus aureus from Heterogeneous Vancomycin-Intermediate Resistance to Vancomycin-Intermediate Resistance
Antimicrobial Agents and Chemotherapy 2008.0
Vancomycin-Resistant Staphylococcus aureus Isolates Associated with Inc18-Like vanA Plasmids in Michigan
Antimicrobial Agents and Chemotherapy 2008.0