Spirocyclic Delta Opioid Receptor Agonists for the Treatment of Pain: Discovery ofN,N-Diethyl-3-hydroxy-4-(spiro[chromene-2,4′-piperidine]-4-yl) Benzamide (ADL5747)

Journal of Medicinal Chemistry
2009.0

Abstract

Selective, nonpeptidic delta opioid receptor agonists have been the subject of great interest as potential novel analgesic agents. The discoveries of BW373U86 (1) and SNC80 (2) contributed to the rapid expansion of research in this field. However, poor drug-like properties and low therapeutic indices have prevented clinical evaluation of these agents. Doses of 1 and 2 similar to those required for analgesic activity produce convulsions in rodents and nonhuman primates. Recently, we described a novel series of potent, selective, and orally bioavailable delta opioid receptor agonists. The lead derivative, ADL5859 (4), is currently in phase II proof-of-concept studies for the management of pain. Further structure activity relationship exploration has led to the discovery of ADL5747 (36), which is approximately 50-fold more potent than 4 in an animal model of inflammatory pain. On the basis of its favorable efficacy, safety, and pharmacokinetic profile, 36 was selected as a clinical candidate for the treatment of pain.

Knowledge Graph

Similar Paper

Spirocyclic Delta Opioid Receptor Agonists for the Treatment of Pain: Discovery ofN,N-Diethyl-3-hydroxy-4-(spiro[chromene-2,4′-piperidine]-4-yl) Benzamide (ADL5747)
Journal of Medicinal Chemistry 2009.0
N,N-Diethyl-4-[(3-hydroxyphenyl)(piperidin-4-yl)amino] benzamide derivatives: The development of diaryl amino piperidines as potent δ opioid receptor agonists with in vivo anti-nociceptive activity in rodent models
Bioorganic & Medicinal Chemistry Letters 2009.0
3-(αR)-α-((2S,5R)-4-Allyl-2,5-dimethyl-1-piperazinyl)-3-hydroxybenzyl)- N-alkyl-N-arylbenzamides:  Potent, Non-Peptidic Agonists of Both the μ and δ Opioid Receptors
Journal of Medicinal Chemistry 2003.0
(±)-4-[(N-allyl-cis-3-methyl-4-piperidinyl)phenylamino]-N,N-diethylbenzamide displays selective binding for the delta opioid receptor
Bioorganic & Medicinal Chemistry Letters 1999.0
Optically pure (−)-4-[(N-allyl-3-methyl-4-piperidinyl)phenyl-amino]-N,N-diethylbenzamide displays selective binding and full agonist activity for the δ opioid receptor
Bioorganic & Medicinal Chemistry Letters 1999.0
Probes for Narcotic Receptor Mediated Phenomena. 19. Synthesis of (+)-4-[(.alpha.R)-.alpha.-((2S,5R)-4-Allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethylbenzamide (SNC 80): A Highly Selective, Nonpeptide .delta. Opioid Receptor Agonist
Journal of Medicinal Chemistry 1994.0
Probes for Narcotic Receptor Mediated Phenomena. 23. Synthesis, Opioid Receptor Binding, and Bioassay of the Highly Selective δ Agonist (+)-4-[(αR)-α-((2S,5R)-4-Allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]- N,N-diethylbenzamide (SNC 80) and Related Novel Nonpeptide δ Opioid Receptor Ligands
Journal of Medicinal Chemistry 1997.0
Design and synthesis of novel delta opioid receptor agonists and their pharmacologies
Bioorganic & Medicinal Chemistry Letters 2009.0
Factors Influencing Agonist Potency and Selectivity for the Opioid δ Receptor Are Revealed in Structure−Activity Relationship Studies of the 4-[(N-Substituted-4-piperidinyl)arylamino]-N,N-diethylbenzamides
Journal of Medicinal Chemistry 2001.0
Discovery of a novel bicyclic compound, DS54360155, as an orally potent analgesic without mu-opioid receptor agonist activity
Bioorganic & Medicinal Chemistry Letters 2019.0