Mechanisms by Which the G333D Mutation in Human Immunodeficiency Virus Type 1 Reverse Transcriptase Facilitates Dual Resistance to Zidovudine and Lamivudine

Antimicrobial Agents and Chemotherapy
2008.0

Abstract

Recent studies have identified a role for mutations in the connection and RNase H domains of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) resistance to nucleoside analog RT inhibitors (NRTI). To provide insight into the biochemical mechanism(s) involved, we investigated the effect of the G333D mutation in the connection domain of RT on resistance to zidovudine (AZT) and lamivudine (3TC) in enzymes that contain both M184V and thymidine analog mutations (TAMs; M41L, L210W, and T215Y). Our results from steady-state kinetic, pre-steady-state kinetic, and thermodynamic analyses indicate that G333D facilitates dual resistance to AZT and 3TC in two ways. First, in combination with M184V, G333D increased the ability of HIV-1 RT to effectively discriminate between the normal substrate dCTP and 3TC-triphosphate. Second, G333D enhanced the ability of RT containing TAMs and M184V to bind template/primer terminated by AZT-monophosphate (AZT-MP), thereby restoring ATP-mediated excision of AZT-MP under steady-state assay conditions. This study is the first to elucidate a molecular mechanism whereby a mutation in the connection domain of RT can affect NRTI susceptibility at the enzyme level.

Knowledge Graph

Similar Paper

Mechanisms by Which the G333D Mutation in Human Immunodeficiency Virus Type 1 Reverse Transcriptase Facilitates Dual Resistance to Zidovudine and Lamivudine
Antimicrobial Agents and Chemotherapy 2008.0
Combinations of Mutations in the Connection Domain of Human Immunodeficiency Virus Type 1 Reverse Transcriptase: Assessing the Impact on Nucleoside and Nonnucleoside Reverse Transcriptase Inhibitor Resistance
Antimicrobial Agents and Chemotherapy 2010.0
The role of 2′,3′-unsaturation on the antiviral activity of anti-HIV nucleosides against 3TC-resistant mutant (M184V)
Bioorganic & Medicinal Chemistry Letters 2003.0
Clicking 3′-Azidothymidine into Novel Potent Inhibitors of Human Immunodeficiency Virus
Journal of Medicinal Chemistry 2013.0
Novel Drug Resistance Pattern Associated with the Mutations K70G and M184V in Human Immunodeficiency Virus Type 1 Reverse Transcriptase
Antimicrobial Agents and Chemotherapy 2007.0
Mechanism of Inhibition of Human Immunodeficiency Virus Type 1 Reverse Transcriptase by a Stavudine Analogue, 4′-Ethynyl Stavudine Triphosphate
Antimicrobial Agents and Chemotherapy 2008.0
The M230L Nonnucleoside Reverse Transcriptase Inhibitor Resistance Mutation in HIV-1 Reverse Transcriptase Impairs Enzymatic Function and Viral Replicative Capacity
Antimicrobial Agents and Chemotherapy 2010.0
Impact of Novel Human Immunodeficiency Virus Type 1 Reverse Transcriptase Mutations P119S and T165A on 4′-Ethynylthymidine Analog Resistance Profile
Antimicrobial Agents and Chemotherapy 2009.0
Human Immunodeficiency Virus Type 1 Recombinant Reverse Transcriptase Enzymes Containing the G190A and Y181C Resistance Mutations Remain Sensitive to Etravirine
Antimicrobial Agents and Chemotherapy 2009.0
Synthesis and Evaluation of “AZT-HEPT”, “AZT-Pyridinone”, and “ddC-HEPT” Conjugates as Inhibitors of HIV Reverse Transcriptase
Journal of Medicinal Chemistry 2000.0