Hybrid Inhibitors of Phosphatidylinositol 3-Kinase (PI3K) and the Mammalian Target of Rapamycin (mTOR): Design, Synthesis, and Superior Antitumor Activity of Novel Wortmannin−Rapamycin Conjugates

Journal of Medicinal Chemistry
2010.0

Abstract

Hyperactivation of the PI3K/AKT/mTOR signaling pathway is common in cancer, and PI3K and mTOR act synergistically in promoting tumor growth, survival, and resistance to chemotherapy. Thus, combined targeting of PI3K and mTOR presents an opportunity for robust and synergistic anticancer efficacy. 17-Hydroxywortmannin (2a) analogues conjugated to rapamycin (3a) analogues via a prodrug linker are uniquely positioned for this approach. Our efforts led to the discovery of diester-linked conjugates that, upon in vivo hydrolysis, released two highly potent inhibitors. Conjugate 7c provided enhanced solubility relative to 3a and to an equivalent mixture of 3a and 9a and demonstrated profound activity in U87MG mouse xenografts, achieving an MED of 1.5 mg/kg, following weekly intravenous dosing. At 15 mg/kg, 7c completely inhibited the growth of HT29 tumors, whereas an equivalent mixture of the inhibitors was poorly tolerated. In the A498 renal tumor model, 7c exhibited superior efficacy over 3a or 9a when administered as a single agent or in combination with bevacizumab. Thus, we have uncovered a novel approach to target both PI3K and mTOR via hybrid inhibitors, leading to a broader and more robust anticancer efficacy.

Knowledge Graph

Similar Paper

Hybrid Inhibitors of Phosphatidylinositol 3-Kinase (PI3K) and the Mammalian Target of Rapamycin (mTOR): Design, Synthesis, and Superior Antitumor Activity of Novel Wortmannin−Rapamycin Conjugates
Journal of Medicinal Chemistry 2010.0
Discovery of benzenesulfonamide derivatives as potent PI3K/mTOR dual inhibitors with in vivo efficacies against hepatocellular carcinoma
Bioorganic & Medicinal Chemistry 2016.0
Design, synthesis and biological evaluation of novel hybrids targeting mTOR and HDACs for potential treatment of hepatocellular carcinoma
European Journal of Medicinal Chemistry 2021.0
Potent, Selective, and Orally Bioavailable Inhibitors of the Mammalian Target of Rapamycin Kinase Domain Exhibiting Single Agent Antiproliferative Activity
Journal of Medicinal Chemistry 2012.0
Discovery of 9-(6-Aminopyridin-3-yl)-1-(3-(trifluoromethyl)phenyl)benzo[h][1,6]naphthyridin-2(1H)-one (Torin2) as a Potent, Selective, and Orally Available Mammalian Target of Rapamycin (mTOR) Inhibitor for Treatment of Cancer
Journal of Medicinal Chemistry 2011.0
Design, Synthesis, and Biological Evaluation of 4-Methyl Quinazoline Derivatives as Anticancer Agents Simultaneously Targeting Phosphoinositide 3-Kinases and Histone Deacetylases
Journal of Medicinal Chemistry 2019.0
Structure-based optimization leads to the discovery of NSC765844, a highly potent, less toxic and orally efficacious dual PI3K/mTOR inhibitor
European Journal of Medicinal Chemistry 2016.0
Discovery and Optimization of 2-Amino-4-methylquinazoline Derivatives as Highly Potent Phosphatidylinositol 3-Kinase Inhibitors for Cancer Treatment
Journal of Medicinal Chemistry 2018.0
Design, synthesis, biological evaluation and docking studies of novel 2-substituted-4-morpholino-7,8-dihydro-5 H -thiopyrano[4,3- d ]pyrimidine derivatives as dual PI3Kα/mTOR inhibitors
European Journal of Medicinal Chemistry 2016.0
Novel anti-prostate cancer scaffold identified by the combination of in silico and cell-based assays targeting the PI3K-AKT-mTOR pathway
Bioorganic & Medicinal Chemistry Letters 2017.0