Design, synthesis, biological evaluation and computational investigation of novel inhibitors of dihydrofolate reductase of opportunistic pathogens

Bioorganic & Medicinal Chemistry
2010.0

Abstract

The present work deals with design, synthesis and biological evaluation of novel, diverse compounds as potential inhibitors of dihydrofolate reductase (DHFR) from opportunistic microorganisms; Pneumocystis carinii (pc), Toxoplasma gondii (tg) and Mycobacterium avium (ma). A set of 14 structurally diverse compounds were designed with varying key pharmacophoric features of DHFR inhibitors, bulky distal substitutions and different bridges joining the distal part and 2,4-diaminopyrimidine nucleus. The designed compounds were synthesized and evaluated in enzyme assay against pc, tg and ma DHFR. The rat liver (rl) DHFR was used as mammalian standard. As the next logical step of the project, flexible molecular docking studies were carried out to predict the binding modes of these compounds in pcDHFR active site and the obtained docked poses were post processed using MM-GBSA protocol for prediction of relative binding affinity. The predicted binding modes were able to rationalize the experimental results in most cases. Of particular interest, both the docking scores and MM-GBSA predicted Delta G(bind) were able to distinguish between the active and low active compounds. Furthermore, good correlation coefficient of 0.797 was obtained between the IC(50) values and MM-GBSA predicted Delta G(bind). Taken together, the current work provides not only a novel scaffold for further optimization of DHFR inhibitors but also an understanding of the specific interactions of inhibitors with DHFR and structural modifications that improve selectivity.

Knowledge Graph

Similar Paper

Design, synthesis, biological evaluation and computational investigation of novel inhibitors of dihydrofolate reductase of opportunistic pathogens
Bioorganic & Medicinal Chemistry 2010.0
Synthesis and Biological Evaluation of 2,4-Diamino-6-(arylaminomethyl)pyrido[2,3-d]pyrimidines as Inhibitors of Pneumocystis carinii and Toxoplasma gondii Dihydrofolate Reductase and as Antiopportunistic Infection and Antitumor Agents
Journal of Medicinal Chemistry 2003.0
Inhibition of Pneumocystis carinii, Toxoplasma gondii, and Mycobacterium avium Dihydrofolate Reductases by 2,4-Diamino-5-[2-methoxy-5-(ω-carboxyalkyloxy)benzyl]pyrimidines:  Marked Improvement in Potency Relative to Trimethoprim and Species Selectivity Relative to Piritrexim
Journal of Medicinal Chemistry 2002.0
Further Studies on 2,4-Diamino-5-(2‘,5‘-disubstituted benzyl)pyrimidines as Potent and Selective Inhibitors of Dihydrofolate Reductases from Three Major Opportunistic Pathogens of AIDS
Journal of Medicinal Chemistry 2003.0
Novel Dihydrofolate Reductase Inhibitors. Structure-Based versus Diversity-Based Library Design and High-Throughput Synthesis and Screening
Journal of Medicinal Chemistry 2003.0
Design, Synthesis, and Molecular Modeling of Novel Pyrido[2,3-d]pyrimidine Analogues As Antifolates; Application of Buchwald–Hartwig Aminations of Heterocycles
Journal of Medicinal Chemistry 2013.0
Selective Pneumocystis carinii Dihydrofolate Reductase Inhibitors:  Design, Synthesis, and Biological Evaluation of New 2,4-Diamino-5-substituted-furo[2,3-d]pyrimidines
Journal of Medicinal Chemistry 1998.0
Synthesis of 2,4-Diamino-6-[2‘-O-(ω-carboxyalkyl)oxydibenz[b,f]azepin-5-yl]methylpteridines as Potent and Selective Inhibitors of Pneumocystis carinii, Toxoplasma gondii, and Mycobacterium avium Dihydrofolate Reductase
Journal of Medicinal Chemistry 2004.0
Structure-Based Design of Selective Inhibitors of Dihydrofolate Reductase:  Synthesis and Antiparasitic Activity of 2,4-Diaminopteridine Analogues with a Bridged Diarylamine Side Chain
Journal of Medicinal Chemistry 1999.0
Nonclassical 2,4-Diamino-8-deazafolate Analogues as Inhibitors of Dihydrofolate Reductases from Rat Liver, Pneumocystis carinii, and Toxoplasma gondii
Journal of Medicinal Chemistry 1996.0