The Efflux Pump Inhibitor Reserpine Selects Multidrug-Resistant Streptococcus pneumoniae Strains That Overexpress the ABC Transporters PatA and PatB

Antimicrobial Agents and Chemotherapy
2008.0

Abstract

One way to combat multidrug-resistant microorganisms is the use of efflux pump inhibitors (EPIs). Spontaneous mutants resistant to the EPI reserpine selected from Streptococcus pneumoniae NCTC 7465 and R6 at a frequency suggestive of a single mutational event were also multidrug resistant. No mutations in pmrA (which encodes the efflux protein PmrA) were detected, and the expression of pmrA was unaltered in all mutants. In the reserpine-resistant multidrug-resistant mutants, the overexpression of both patA and patB, which encode ABC transporters, was associated with accumulation of low concentrations of antibiotics and dyes. The addition of sodium orthovanadate, an inhibitor of ABC efflux pumps, or the insertional inactivation of either gene restored wild-type antibiotic susceptibility and wild-type levels of accumulation. Only when patA was insertionally inactivated were both multidrug resistance and reserpine resistance lost. Strains in which patA was insertionally inactivated grew significantly more slowly than the wild type. These data indicate that the overexpression of both patA and patB confers multidrug resistance in S. pneumoniae but that only patA is involved in reserpine resistance. The selection of reserpine-resistant multidrug-resistant pneumococci has implications for analogous systems in other bacteria or in cancer.

Knowledge Graph

Similar Paper

The Efflux Pump Inhibitor Reserpine Selects Multidrug-Resistant Streptococcus pneumoniae Strains That Overexpress the ABC Transporters PatA and PatB
Antimicrobial Agents and Chemotherapy 2008.0
Overexpression of patA and patB , Which Encode ABC Transporters, Is Associated with Fluoroquinolone Resistance in Clinical Isolates of Streptococcus pneumoniae
Antimicrobial Agents and Chemotherapy 2011.0
In Vitro Infection Model Characterizing the Effect of Efflux Pump Inhibition on Prevention of Resistance to Levofloxacin and Ciprofloxacin in Streptococcus pneumoniae
Antimicrobial Agents and Chemotherapy 2007.0
Two Distinct Major Facilitator Superfamily Drug Efflux Pumps Mediate Chloramphenicol Resistance in Streptomyces coelicolor
Antimicrobial Agents and Chemotherapy 2009.0
Contribution of the CmeABC Efflux Pump to Macrolide and Tetracycline Resistance in Campylobacter jejuni
Antimicrobial Agents and Chemotherapy 2007.0
Klebsiella pneumoniae AcrAB Efflux Pump Contributes to Antimicrobial Resistance and Virulence
Antimicrobial Agents and Chemotherapy 2010.0
Role of AbeS, a Novel Efflux Pump of the SMR Family of Transporters, in Resistance to Antimicrobial Agents in Acinetobacter baumannii
Antimicrobial Agents and Chemotherapy 2009.0
Role of the AheABC Efflux Pump in Aeromonas hydrophila Intrinsic Multidrug Resistance
Antimicrobial Agents and Chemotherapy 2008.0
RamA Confers Multidrug Resistance in Salmonella enterica via Increased Expression of acrB , Which Is Inhibited by Chlorpromazine
Antimicrobial Agents and Chemotherapy 2008.0
An ABC transporter is essential for resistance to the antitumor agent mithramycin in the producerStreptomyces argillaceus
Molecular and General Genetics MGG 1996.0