Synthesis and Pharmacological Evaluation of N-(3-(1H-Indol-4-yl)-5-(2-methoxyisonicotinoyl)phenyl)methanesulfonamide (LP-261), a Potent Antimitotic Agent

Journal of Medicinal Chemistry
2011.0

Abstract

The synthesis and optimization of a series of orally bioavailable 1-(1H-indol-4-yl)-3,5-disubstituted benzene analogues as antimitotic agents are described. A functionalized dibromobenzene intermediate was used as a key scaffold, which when modified by sequential Suzuki coupling and Buchwald-Hartwig amination provided a flexible entry to 1,3,5-trisubstituted phenyl compounds. A 1H-indol-4-yl moiety at the 1-position was determined to be a critical feature for optimal potency. The compounds have been shown to induce cell cycle arrest at the G2/M phase and demonstrate efficacy in both cell viability and cell proliferation assays. The primary site of action for these agents is revealed by their colchicine competitive inhibition of tubulin polymerization, and a computational model has been developed for the association of these compounds to tubulin. An optimized lead LP-261 significantly inhibits growth of a human non-small-cell lung tumor (NCI-H522) in a mouse xenograft model.

Knowledge Graph

Similar Paper

Synthesis and Pharmacological Evaluation of N-(3-(1H-Indol-4-yl)-5-(2-methoxyisonicotinoyl)phenyl)methanesulfonamide (LP-261), a Potent Antimitotic Agent
Journal of Medicinal Chemistry 2011.0
Synthetic 2-Aroylindole Derivatives as a New Class of Potent Tubulin-Inhibitory, Antimitotic Agents
Journal of Medicinal Chemistry 2001.0
Synthesis and biological evaluation of novel indole derivatives containing sulfonamide scaffold as potential tubulin inhibitor
MedChemComm 2016.0
Synthesis of N4-(substituted phenyl)-N4-alkyl/desalkyl-9H-pyrimido[4,5-b]indole-2,4-diamines and identification of new microtubule disrupting compounds that are effective against multidrug resistant cells
Bioorganic & Medicinal Chemistry 2013.0
Synthesis and biological evaluation of 6H-pyrido[2′,1′:2,3]imidazo[4,5-c]isoquinolin-5(6H)-ones as antimitotic agents and inhibitors of tubulin polymerization
Bioorganic & Medicinal Chemistry 2014.0
Synthesis and bioactive evaluation of N-((1-methyl-1H-indol-3-yl)methyl)-N-(3,4,5-trimethoxyphenyl)acetamide derivatives as agents for inhibiting tubulin polymerization
RSC Medicinal Chemistry 2022.0
[1,2]Oxazolo[5,4- e ]isoindoles as promising tubulin polymerization inhibitors
European Journal of Medicinal Chemistry 2016.0
Design, Synthesis, and Biological Evaluation of 1-Methyl-1,4-dihydroindeno[1,2-c]pyrazole Analogues as Potential Anticancer Agents Targeting Tubulin Colchicine Binding Site
Journal of Medicinal Chemistry 2016.0
Synthesis and biological evaluation of 1-(4′-Indolyl and 6′-Quinolinyl) indoles as a new class of potent anticancer agents
European Journal of Medicinal Chemistry 2011.0
Synthesis and Structure–Activity Relationships of N-Methyl-5,6,7-trimethoxylindoles as Novel Antimitotic and Vascular Disrupting Agents
Journal of Medicinal Chemistry 2013.0