Defining the Role of Mutations inPlasmodium vivaxDihydrofolate Reductase-Thymidylate Synthase Gene Using an EpisomalPlasmodium falciparumTransfection System

Antimicrobial Agents and Chemotherapy
2010.0

Abstract

Plasmodium vivax resistance to antifolates is prevalent throughout Australasia and is caused by point mutations within the parasite dihydrofolate reductase (DHFR)-thymidylate synthase. Several unique mutations have been reported in P. vivax DHFR, and their roles in resistance to classic and novel antifolates are not entirely clear due, in part, to the inability to culture P. vivax in vitro. In this study, we use a homologous system to episomally express both wild-type and various mutant P. vivax dhfr (pvdhfr) alleles in an antifolate-sensitive line of P. falciparum and to assess their influences on the susceptibility of the recipient P. falciparum line to commonly used and new antifolate drugs. Although the wild-type pvdhfr-transfected P. falciparum line was as susceptible to antifolate drugs as the P. falciparum parent line, the single (117N), double (57L/117T and 58R/117T), and quadruple (57L/58R/61M/117T) mutant pvdhfr alleles conferred a marked reduction in their susceptibilities to antifolates. The resistance index increased with the number of mutations in these alleles, indicating that these mutations contribute to antifolate resistance directly. In contrast, the triple mutant allele (58R/61M/117T) significantly reversed the resistance to all antifolates, indicating that 61M may be a compensatory mutation. These findings help elucidate the mechanism of antifolate resistance and the effect of existing mutations in the parasite population on the current and new generation of antifolate drugs. It also demonstrates that the episomal transfection system has the potential to provide a rapid screening system for drug development and for studying drug resistance mechanisms in P. vivax.

Knowledge Graph

Similar Paper

Defining the Role of Mutations inPlasmodium vivaxDihydrofolate Reductase-Thymidylate Synthase Gene Using an EpisomalPlasmodium falciparumTransfection System
Antimicrobial Agents and Chemotherapy 2010.0
Genetic Analysis of the Dihydrofolate Reductase-Thymidylate Synthase Gene from Geographically Diverse Isolates of Plasmodium malariae
Antimicrobial Agents and Chemotherapy 2007.0
In Vitro Activity of Antifolate and Polymorphism in Dihydrofolate Reductase ofPlasmodium falciparumIsolates from the Kenyan Coast: Emergence of Parasites with Ile-164-Leu Mutation
Antimicrobial Agents and Chemotherapy 2009.0
Conflicting Requirements of Plasmodium falciparum Dihydrofolate Reductase Mutations Conferring Resistance to Pyrimethamine-WR99210 Combination
Antimicrobial Agents and Chemotherapy 2007.0
Hybrid Inhibitors of Malarial Dihydrofolate Reductase with Dual Binding Modes That Can Forestall Resistance
ACS Medicinal Chemistry Letters 2018.0
Inhibitors of Multiple Mutants of Plasmodium falciparum Dihydrofolate Reductase and Their Antimalarial Activities
Journal of Medicinal Chemistry 2004.0
Development of a Lead Inhibitor for the A16V+S108T Mutant of Dihydrofolate Reductase from the Cycloguanil-Resistant Strain (T9/94) of Plasmodium falciparum<sup>†</sup>
Journal of Medicinal Chemistry 2000.0
Rational Drug Design Approach for Overcoming Drug Resistance:  Application to Pyrimethamine Resistance in Malaria
Journal of Medicinal Chemistry 1998.0
Flexible diaminodihydrotriazine inhibitors of Plasmodium falciparum dihydrofolate reductase: Binding strengths, modes of binding and their antimalarial activities
European Journal of Medicinal Chemistry 2020.0
Target Guided Synthesis of 5-Benzyl-2,4-diamonopyrimidines: Their Antimalarial Activities and Binding Affinities to Wild Type and Mutant Dihydrofolate Reductases from Plasmodium falciparum
Journal of Medicinal Chemistry 2004.0