Increased Temperature Enhances the Antimicrobial Effects of Daptomycin, Vancomycin, Tigecycline, Fosfomycin, and Cefamandole on Staphylococcal Biofilms

Antimicrobial Agents and Chemotherapy
2010.0

Abstract

Implant-related infections are serious complications of trauma and orthopedic surgery and are most difficult to treat. The bacterial biofilms of 34 clinical Staphylococcus sp. isolates (Staphylococcus aureus, n = 14; coagulase-negative staphylococci, n = 19) were incubated with daptomycin (DAP; 5, 25, or 100 mg/liter), vancomycin (VAN; 5, 25, or 100 mg/liter), tigecycline (TGC; 1, 5, or 25 mg/liter), fosfomycin (FOM; 100, 250, or 1,000 mg/liter), and cefamandole (FAM; 50, 100, or 500 mg/liter) for 24 h at three different ambient temperatures: 35°C, 40°C, and 45°C. To quantify the reduction of the biomass, the optical density ratio (ODr) of stained biofilms and the number of growing bacteria were determined. Increasing the temperature to 45°C or to 40°C during incubation with FAM, FOM, TGC, VAN, or DAP led to a significant but differential reduction of the thickness of the staphylococcal biofilms compared to that at 35°C (P < 0.05). Growth reduction was enhanced for DAP at 100 mg/liter at 35°C, 40°C, and 45°C (log count reductions, 4, 3.6, and 3.3, respectively; P < 0.05). A growth reduction by 2 log counts was detected for FAM at a concentration of 500 mg/liter at 40°C and 45°C (P = 0.01). FOM at 1,000 mg/liter reduced the bacterial growth by 1.2 log counts (not significant). The antibacterial activity of antimicrobial agents is significantly but differentially enhanced by increasing the ambient temperature and using high concentrations. Adjuvant hyperthermia may be of value in the treatment of biofilm-associated implant-related infections.

Knowledge Graph

Similar Paper

Increased Temperature Enhances the Antimicrobial Effects of Daptomycin, Vancomycin, Tigecycline, Fosfomycin, and Cefamandole on Staphylococcal Biofilms
Antimicrobial Agents and Chemotherapy 2010.0
Activities of High-Dose Daptomycin, Vancomycin, and Moxifloxacin Alone or in Combination with Clarithromycin or Rifampin in a NovelIn VitroModel ofStaphylococcus aureusBiofilm
Antimicrobial Agents and Chemotherapy 2010.0
Comparative Activities of Daptomycin, Linezolid, and Tigecycline against Catheter-Related Methicillin-Resistant Staphylococcus Bacteremic Isolates Embedded in Biofilm
Antimicrobial Agents and Chemotherapy 2007.0
Daptomycin Rapidly Penetrates a Staphylococcus epidermidis Biofilm
Antimicrobial Agents and Chemotherapy 2009.0
Effect of Electrical Current on the Activities of Antimicrobial Agents against Pseudomonas aeruginosa , Staphylococcus aureus , and Staphylococcus epidermidis Biofilms
Antimicrobial Agents and Chemotherapy 2009.0
In Vitro Activities of Telavancin and Vancomycin against Biofilm-Producing Staphylococcus aureus , S . epidermidis , and Enterococcus faecalis Strains
Antimicrobial Agents and Chemotherapy 2009.0
In Vitro Effects of Antimicrobial Agents on Planktonic and Biofilm Forms of Staphylococcus lugdunensis Clinical Isolates
Antimicrobial Agents and Chemotherapy 2007.0
Efficacy of High Doses of Daptomycin versus Alternative Therapies against Experimental Foreign-Body Infection by Methicillin-Resistant Staphylococcus aureus
Antimicrobial Agents and Chemotherapy 2009.0
Antimicrobial Activities of Daptomycin, Vancomycin, and Oxacillin in Human Monocytes and of Daptomycin in Combination with Gentamicin and/or Rifampin in Human Monocytes and in Broth against Staphylococcus aureus
Antimicrobial Agents and Chemotherapy 2007.0
Activities of Daptomycin and Comparative Antimicrobials, Singly and in Combination, against Extracellular and Intracellular Staphylococcus aureus and Its Stable Small-Colony Variant in Human Monocyte-Derived Macrophages and in Broth
Antimicrobial Agents and Chemotherapy 2008.0