Probes for narcotic receptor mediated phenomena. Part 42: Synthesis and in vitro pharmacological characterization of the N-methyl and N-phenethyl analogues of the racemic ortho-c and para-c oxide-bridged phenylmorphans

Bioorganic & Medicinal Chemistry
2011.0

Abstract

A new synthesis of N-methyl and N-phenethyl substituted ortho-c and para-c oxide-bridged phenylmorphans, using N-benzyl- rather than N-methyl-substituted intermediates, was used and the pharmacological properties of these compounds were determined. The N-phenethyl substituted ortho-c oxide-bridged phenylmorphan(rac-(3R,6aS,11aS)-2-phenethyl-2,3,4,5,6,11a-hexahydro-1H-3,6a-methanobenzofuro[2,3-c]azocin-10-ol (12)) was found to have the highest μ-opioid receptor affinity (K(i)=1.1 nM) of all of the a- through f-oxide-bridged phenylmorphans. Functional data ([³⁵S]GTP-γ-S) showed that the racemate 12 was more than three times more potent than naloxone as an μ-opioid antagonist.

Knowledge Graph

Similar Paper

Probes for narcotic receptor mediated phenomena. Part 42: Synthesis and in vitro pharmacological characterization of the N-methyl and N-phenethyl analogues of the racemic ortho-c and para-c oxide-bridged phenylmorphans
Bioorganic & Medicinal Chemistry 2011.0
Probes for narcotic receptor mediated phenomena. 43. Synthesis of the ortho-a and para-a, and improved synthesis and optical resolution of the ortho-b and para-b oxide-bridged phenylmorphans: Compounds with moderate to low opioid-receptor affinity
Bioorganic & Medicinal Chemistry 2011.0
Probes for Narcotic Receptor Mediated Phenomena. 37. Synthesis and Opioid Binding Affinity of the Final Pair of Oxide-Bridged Phenylmorphans, the Ortho- and Para-b-Isomers and Their N-Phenethyl Analogues, and the Synthesis of the N-Phenethyl Analogues of the Ortho- and Para-d-Isomers
Journal of Medicinal Chemistry 2008.0
Probes for narcotic receptor mediated phenomena. 48. C7- and C8-substituted 5-phenylmorphan opioids from diastereoselective alkylation
European Journal of Medicinal Chemistry 2013.0
Probes for Narcotic Receptor Mediated Phenomena. 39. Enantiomeric N-Substituted Benzofuro[2,3-c]pyridin-6-ols: Synthesis and Topological Relationship to Oxide-Bridged Phenylmorphans
Journal of Medicinal Chemistry 2009.0
Probes for narcotic receptor mediated phenomena 49. N-substituted rac-cis-4a-arylalkyl-1,2,3,4,4a,9a-hexahydrobenzofuro[2,3-c]pyridin-6-ols
European Journal of Medicinal Chemistry 2015.0
Redefining the structure–activity relationships of 2,6-methano-3-benzazocines. 5. Opioid receptor binding properties of N-((4′-phenyl)-phenethyl) analogues of 8-CAC
Bioorganic & Medicinal Chemistry Letters 2007.0
Probes for Narcotic Receptor Mediated Phenomena. 41. Unusual Inverse μ-Agonists and Potent μ-Opioid Antagonists by Modification of the N-Substituent in Enantiomeric 5-(3-Hydroxyphenyl)morphans
Journal of Medicinal Chemistry 2011.0
Probes for narcotic receptor mediated phenomena. 44. Synthesis of an N-substituted 4-hydroxy-5-(3-hydroxyphenyl)morphan with high affinity and selective μ-antagonist activity
European Journal of Medicinal Chemistry 2012.0
Redefining the structure–activity relationships of 2,6-methano-3-benzazocines. Part 8. High affinity ligands for opioid receptors in the picomolar Ki range: Oxygenated N-(2-[1,1′-biphenyl]-4-ylethyl) analogues of 8-CAC
Bioorganic & Medicinal Chemistry Letters 2012.0