Probes for narcotic receptor mediated phenomena. 44. Synthesis of an N-substituted 4-hydroxy-5-(3-hydroxyphenyl)morphan with high affinity and selective μ-antagonist activity

European Journal of Medicinal Chemistry
2012.0

Abstract

A simple three-step synthesis of 5-(3-hydroxyphenyl)-2-methyl-2-azabicyclo[3.3.1]nonan-4-ol (3a) was achieved using an osmium tetroxide mediated oxidation of the known intermediate 6. A pyrrolidine-ring variant of 3a (3-(7-(hydroxymethyl)-6-methyl-6-azabicyclo[3.2.1]octan-1-yl)phenol (5)) was isolated when other routes were used. The epimeric hydroxy analogue 4a was synthesized by simple inversion of the stereochemistry at C-4. Both N-methyl (3a and 4a) and N-phenethyl (3b and 4b) derivatives were synthesized. The compounds were examined for their opioid receptor affinity and the N-phenethyl analogue 3b was found to have relatively weak affinity for the μ-opioid receptor (K(i) = 74 nM). However, the N-phenethyl analogue of the C-4 epimer, 4b, had about 15 fold higher affinity than 3b and was selective for the μ-opioid receptor (K(i) = 4.6 nM). Compound 4b was a moderately potent μ-opioid antagonist (K(e) = 12 nM), as determined by [(35)S]GTP-γ-S assays. Compounds 3b and 4b were energy minimized at the level of B3LYP/6-31G*, and then overlaid onto the 5-phenylmorphan, the (1R,5R,9S)-(-)-enantiomer of 2b (Fig. 1) with the α or β-OH group at the C-9 position. The spatial orientation of the hydroxyl moiety in 3b, 4b, 2a, and 2b is proposed to be the structural requirement for high μ-opioid receptor binding affinity and their agonist or antagonist activity. The modest change in spatial position of the hydroxyl moiety, and not the N-substituent, induced the change from potent agonist to an antagonist of moderate potency.

Knowledge Graph

Similar Paper

Probes for narcotic receptor mediated phenomena. 44. Synthesis of an N-substituted 4-hydroxy-5-(3-hydroxyphenyl)morphan with high affinity and selective μ-antagonist activity
European Journal of Medicinal Chemistry 2012.0
Probes for Narcotic Receptor Mediated Phenomena. 41. Unusual Inverse μ-Agonists and Potent μ-Opioid Antagonists by Modification of the N-Substituent in Enantiomeric 5-(3-Hydroxyphenyl)morphans
Journal of Medicinal Chemistry 2011.0
Probes for Narcotic Receptor Mediated Phenomena. 34. Synthesis and Structure−Activity Relationships of a Potent μ-Agonist δ-Antagonist and an Exceedingly Potent Antinociceptive in the Enantiomeric C9-Substituted 5-(3-Hydroxyphenyl)-N-phenylethylmorphan Series
Journal of Medicinal Chemistry 2007.0
Modulation of opioid receptor affinity and efficacy via N-substitution of 9β-hydroxy-5-(3-hydroxyphenyl)morphan: Synthesis and computer simulation study
Bioorganic & Medicinal Chemistry 2017.0
Probes for narcotic receptor mediated phenomena. 43. Synthesis of the ortho-a and para-a, and improved synthesis and optical resolution of the ortho-b and para-b oxide-bridged phenylmorphans: Compounds with moderate to low opioid-receptor affinity
Bioorganic & Medicinal Chemistry 2011.0
Probes for narcotic receptor mediated phenomena. 48. C7- and C8-substituted 5-phenylmorphan opioids from diastereoselective alkylation
European Journal of Medicinal Chemistry 2013.0
N-Substituent modulation of opiate agonist/antagonist activity in resolved 3-methyl-3-(m-hydroxyphenyl)piperidines
Journal of Medicinal Chemistry 1986.0
Probes for narcotic receptor mediated phenomena. 47.1 Novel C4a- and N-substituted-1,2,3,4,4a,9a-hexahydrobenzofuro[2,3-c]pyridin-6-ols
Bioorganic & Medicinal Chemistry 2013.0
Probes for narcotic receptor mediated phenomena. Part 42: Synthesis and in vitro pharmacological characterization of the N-methyl and N-phenethyl analogues of the racemic ortho-c and para-c oxide-bridged phenylmorphans
Bioorganic & Medicinal Chemistry 2011.0
Probes for narcotic receptor mediated phenomena 49. N-substituted rac-cis-4a-arylalkyl-1,2,3,4,4a,9a-hexahydrobenzofuro[2,3-c]pyridin-6-ols
European Journal of Medicinal Chemistry 2015.0