Probes for narcotic receptor mediated phenomena. 48. C7- and C8-substituted 5-phenylmorphan opioids from diastereoselective alkylation

European Journal of Medicinal Chemistry
2013.0

Abstract

The exploration of the effect of substituents at C7 and C8 of the 5-phenylmorphans on their affinity for opioid receptors was enabled by our recently introduced "one pot" diastereoselective synthesis that provided C7-oxo, hydroxy and alkyl substituents, C8-alkyl substituted 5-phenylmorphans, and compounds that had a new cyclohexane ring that includes the C7 and C8 carbon atoms of the 5-phenylmorphan. The affinity of the 5-phenylmorphans for opioid receptors is increased by a C8-methyl substituent, compared with its C7 analog. The affinity of the newly synthesized compounds is generally for the μ-opioid receptor, rather than the δ- or κ-receptors. Addition of a new cyclohexane ring to the C7 and C8 positions on the cyclohexane ring of the 5-phenylmorphans enhances μ-receptor affinity, bringing the Ki to the subnanomolar level. Unexpectedly, the N-methyl substituted compounds generally had higher affinity than comparable N-phenethyl-substituted relatives. The configurations of two compounds were determined by single-crystal X-ray crystallographic analyses.

Knowledge Graph

Similar Paper

Probes for narcotic receptor mediated phenomena. 48. C7- and C8-substituted 5-phenylmorphan opioids from diastereoselective alkylation
European Journal of Medicinal Chemistry 2013.0
Probes for Narcotic Receptor Mediated Phenomena. 41. Unusual Inverse μ-Agonists and Potent μ-Opioid Antagonists by Modification of the N-Substituent in Enantiomeric 5-(3-Hydroxyphenyl)morphans
Journal of Medicinal Chemistry 2011.0
Probes for narcotic receptor mediated phenomena. 43. Synthesis of the ortho-a and para-a, and improved synthesis and optical resolution of the ortho-b and para-b oxide-bridged phenylmorphans: Compounds with moderate to low opioid-receptor affinity
Bioorganic & Medicinal Chemistry 2011.0
Probes for Narcotic Receptor Mediated Phenomena. 34. Synthesis and Structure−Activity Relationships of a Potent μ-Agonist δ-Antagonist and an Exceedingly Potent Antinociceptive in the Enantiomeric C9-Substituted 5-(3-Hydroxyphenyl)-N-phenylethylmorphan Series
Journal of Medicinal Chemistry 2007.0
Probes for narcotic receptor mediated phenomena. 44. Synthesis of an N-substituted 4-hydroxy-5-(3-hydroxyphenyl)morphan with high affinity and selective μ-antagonist activity
European Journal of Medicinal Chemistry 2012.0
Probes for narcotic receptor mediated phenomena. Part 42: Synthesis and in vitro pharmacological characterization of the N-methyl and N-phenethyl analogues of the racemic ortho-c and para-c oxide-bridged phenylmorphans
Bioorganic & Medicinal Chemistry 2011.0
Probes for narcotic receptor mediated phenomena 49. N-substituted rac-cis-4a-arylalkyl-1,2,3,4,4a,9a-hexahydrobenzofuro[2,3-c]pyridin-6-ols
European Journal of Medicinal Chemistry 2015.0
Probes for Narcotic Receptor Mediated Phenomena. 37. Synthesis and Opioid Binding Affinity of the Final Pair of Oxide-Bridged Phenylmorphans, the Ortho- and Para-b-Isomers and Their N-Phenethyl Analogues, and the Synthesis of the N-Phenethyl Analogues of the Ortho- and Para-d-Isomers
Journal of Medicinal Chemistry 2008.0
Phenylmorphans and analogs: opioid receptor subtype selectivity and effect of conformation on activity
Journal of Medicinal Chemistry 1992.0
Asymmetric Syntheses, Opioid Receptor Affinities, and Antinociceptive Effects of 8-Amino-5,9-methanobenzocyclooctenes, a New Class of Structural Analogues of the Morphine Alkaloids
Journal of Medicinal Chemistry 1996.0