Novel multipotent phenylthiazole–tacrine hybrids for the inhibition of cholinesterase activity, β-amyloid aggregation and Ca2+ overload

Bioorganic & Medicinal Chemistry
2012.0

Abstract

In this study, a series of multipotent phenylthiazole-tacrine hybrids (7a-7e, 8, and 9a-9m) were synthesized and biologically evaluated. Screening results showed that phenylthiazole-tacrine hybrids were potent cholinesterase inhibitors with pIC(50) (-logIC(50)) value ranging from 5.78 ± 0.05 to 7.14 ± 0.01 for acetylcholinesterase (AChE), and from 5.75 ± 0.03 to 10.35 ± 0.15 for butyrylcholinesterase (BuChE). The second series of phenylthiazole-tacrine hybrids (9a-9m) could efficiently prevent Aβ(1-42) self-aggregation. The structure-activity relationship revealed that their inhibitory potency relied on the type of middle linker and substitutions at 4'-position of 4-phenyl-2-aminothiazole. In addition, 7a and 7c also displayed the Ca(2+) overload blockade effect in the primary cultured cortical neurons. Consequently, these compounds emerged as promising molecules for the therapy of Alzheimer's disease.

Knowledge Graph

Similar Paper

Novel multipotent phenylthiazole–tacrine hybrids for the inhibition of cholinesterase activity, β-amyloid aggregation and Ca2+ overload
Bioorganic & Medicinal Chemistry 2012.0
Design, synthesis and neuroprotective evaluation of novel tacrine–benzothiazole hybrids as multi-targeted compounds against Alzheimer’s disease
Bioorganic & Medicinal Chemistry 2013.0
Design, synthesis and evaluation of novel tacrine-multialkoxybenzene hybrids as dual inhibitors for cholinesterases and amyloid beta aggregation
Bioorganic & Medicinal Chemistry 2011.0
Design, synthesis and evaluation of novel tacrine-multialkoxybenzene hybrids as multi-targeted compounds against Alzheimer's disease
European Journal of Medicinal Chemistry 2016.0
Inhibition of cholinesterase activity and amyloid aggregation by berberine-phenyl-benzoheterocyclic and tacrine-phenyl-benzoheterocyclic hybrids
Bioorganic & Medicinal Chemistry 2012.0
O-Hydroxyl- or o-amino benzylamine-tacrine hybrids: Multifunctional biometals chelators, antioxidants, and inhibitors of cholinesterase activity and amyloid-β aggregation
Bioorganic & Medicinal Chemistry 2012.0
Hybrids of oxoisoaporphine-tacrine congeners: Novel acetylcholinesterase and acetylcholinesterase-induced β-amyloid aggregation inhibitors
European Journal of Medicinal Chemistry 2011.0
Novel Tacrine–Benzofuran Hybrids as Potent Multitarget-Directed Ligands for the Treatment of Alzheimer’s Disease: Design, Synthesis, Biological Evaluation, and X-ray Crystallography
Journal of Medicinal Chemistry 2016.0
Synthesis and activity towards Alzheimer's disease in vitro: Tacrine, phenolic acid and ligustrazine hybrids
European Journal of Medicinal Chemistry 2018.0
Design, synthesis and bioevaluation of tacrine hybrids with cinnamate and cinnamylidene acetate derivatives as potential anti-Alzheimer drugs
MedChemComm 2015.0