Synthesis of novel cognition enhancers with pyrazolo[5,1- c ][1,2,4]benzotriazine core acting at γ-aminobutyric acid type A (GABA A ) receptor

Bioorganic & Medicinal Chemistry
2013.0

Abstract

Memory dysfunction associated with aging, neurodegenerative and psychiatric disorders represents an increasing medical need. Advances in research exploring the biological mechanisms underlying learning and memory have opened new potential approaches for development of memory-enhancing therapies addressed to selective neuronal targets. In this work, we synthesized some derivatives with a pyrazolo[5,1-c][1,2,4]benzotriazine core to identify ligands on GABAA receptors subtype (benzodiazepine site on GABAA-receptor) endowed with the potential of enhancing cognition activity without the side effects usually associated with non-selective GABAA modulators. In fact, there is much evidence that GABAA-R (γ-aminobutyric acid, type A receptor) subtype ligands have relevance in learning and memory. In vitro and in vivo tests have been performed. Pharmacological data indicate that compounds 7, 13, 14 and 22 act as dual functional modulators of GABAA-Rs (promnemonic and anxiolytic agents) while only compounds 3 and 10 stand out as selectively displaying good antiamnesic and procognitive activity (1 and 3 mg/kg, respectively).

Knowledge Graph

Similar Paper

Synthesis of novel cognition enhancers with pyrazolo[5,1- c ][1,2,4]benzotriazine core acting at γ-aminobutyric acid type A (GABA A ) receptor
Bioorganic & Medicinal Chemistry 2013.0
Synthesis, in Vivo Evaluation, and Molecular Modeling Studies of New Pyrazolo[5,1-c][1,2,4]benzotriazine 5-Oxide Derivatives. Identification of a Bifunctional Hydrogen Bond Area Related to the Inverse Agonism
Journal of Medicinal Chemistry 2009.0
Identification of a New Pyrazolo[1,5-a]quinazoline Ligand Highly Affine to γ-Aminobutyric Type A (GABA<sub>A</sub>) Receptor Subtype with Anxiolytic-Like and Antihyperalgesic Activity
Journal of Medicinal Chemistry 2017.0
Novel 3-iodo-8-ethoxypyrazolo[5,1-c][1,2,4]benzotriazine 5-oxide as promising lead for design of α5-inverse agonist useful tools for therapy of mnemonic damage
Bioorganic &amp; Medicinal Chemistry 2007.0
Novel 3-aroylpyrazolo[5,1-c][1,2,4]benzotriazine 5-oxides 8-substituted, ligands at GABAA/benzodiazepine receptor complex: Synthesis, pharmacological and molecular modeling studies
Bioorganic &amp; Medicinal Chemistry 2008.0
Developing dual functional allosteric modulators of GABAA receptors
Bioorganic &amp; Medicinal Chemistry 2010.0
Synthesis and pharmacological evaluation of pyrazolo[1,5-a]pyrimidin-7(4H)-one derivatives as potential GABAA-R ligands
Bioorganic &amp; Medicinal Chemistry 2017.0
New Fluoro Derivatives of the Pyrazolo[5,1-c][1,2,4]benzotriazine 5-Oxide System: Evaluation of Fluorine Binding Properties in the Benzodiazepine Site on γ-Aminobutyrric Acid Type A (GABA<sub>A</sub>) Receptor. Design, Synthesis, Biological, and Molecular Modeling Investigation
Journal of Medicinal Chemistry 2010.0
A Novel Selective GABA<sub>A</sub>α1 Receptor Agonist Displaying Sedative and Anxiolytic-like Properties in Rodents
Journal of Medicinal Chemistry 2005.0
Novel agonists of benzodiazepine receptors: Design, synthesis, binding assay and pharmacological evaluation of 1,2,4-triazolo[1,5-a]pyrimidinone and 3-amino-1,2,4-triazole derivatives
Bioorganic &amp; Medicinal Chemistry 2015.0