Design, Synthesis, and Biological Evaluation of (E)-N-Aryl-2-arylethenesulfonamide Analogues as Potent and Orally Bioavailable Microtubule-Targeted Anticancer Agents

Journal of Medicinal Chemistry
2013.0

Abstract

A series of novel (E)-N-aryl-2-arylethenesulfonamides (6) were synthesized and evaluated for their anticancer activity. Some of the compounds in this series showed potent cytotoxicity against a wide spectrum of cancer cell-lines (IC50 values ranging from 5 to 10 nM) including all drug resistant cell-lines. Nude mice xenograft assays with compound (E)-N-(3-amino-4-methoxyphenyl)-2-(2',4',6'-trimethoxyphenyl)ethenesulfonamide (6t) showed dramatic reduction in tumor size, indicating their in vivo potential as anticancer agents. A preliminary drug development study with compound 6t is predicted to have increased blood-brain barrier permeability relative to many clinically used antimitotic agents. Mechanistic studies indicate that 6t and some other analogues disrupted microtubule formation, formation of mitotic spindles, and arrest of cells in mitotic phase. Compound 6t inhibited purified tubulin polymerization in vitro and in vivo and circumvented drug resistance mediated by P-glycoprotein. Compound 6t specifically competed with colchicine binding to tubulin and with similar avidity as podophylltoxin, indicating its binding site on tubulin.

Knowledge Graph

Similar Paper

Design, Synthesis, and Biological Evaluation of (E)-N-Aryl-2-arylethenesulfonamide Analogues as Potent and Orally Bioavailable Microtubule-Targeted Anticancer Agents
Journal of Medicinal Chemistry 2013.0
Design, synthesis, and biological evaluation of novel N-γ-carboline arylsulfonamides as anticancer agents
Bioorganic & Medicinal Chemistry 2010.0
7-Aroyl-aminoindoline-1-sulfonamides as a Novel Class of Potent Antitubulin Agents
Journal of Medicinal Chemistry 2006.0
Synthesis and biological evaluation of 7-arylindoline-1-benzenesulfonamides as a novel class of potent anticancer agents
MedChemComm 2010.0
Antitumor Agents 155. Synthesis and Biological Evaluation of 3',6,7-Substituted 2-Phenyl-4-quinolones as Antimicrotubule Agents
Journal of Medicinal Chemistry 1994.0
Synthesis of N4-(substituted phenyl)-N4-alkyl/desalkyl-9H-pyrimido[4,5-b]indole-2,4-diamines and identification of new microtubule disrupting compounds that are effective against multidrug resistant cells
Bioorganic & Medicinal Chemistry 2013.0
Sulfonate Derivatives of Naphtho[2,3-b]thiophen-4(9H)-one and 9(10H)-Anthracenone as Highly Active Antimicrotubule Agents. Synthesis, Antiproliferative Activity, and Inhibition of Tubulin Polymerization
Journal of Medicinal Chemistry 2007.0
Synthesis, anti-cancer evaluation of benzenesulfonamide derivatives as potent tubulin-targeting agents
European Journal of Medicinal Chemistry 2016.0
Synthesis and biological evaluation of novel indole derivatives containing sulfonamide scaffold as potential tubulin inhibitor
MedChemComm 2016.0
Design, Synthesis, and Biological Evaluation of 1-Methyl-1,4-dihydroindeno[1,2-c]pyrazole Analogues as Potential Anticancer Agents Targeting Tubulin Colchicine Binding Site
Journal of Medicinal Chemistry 2016.0